Posted on Leave a comment

怎么求矩阵方程(Matrix Equation)?

求解矩阵方程,很像解一个一元一次方程,第一步就要”合并同类项”,将未知矩阵放在一起,然后利用逆矩阵来求解。我们来看例子。

例 1:解矩阵方程\(AB=A+2B\),其中
\[A=\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}.\]

我们看到,两边都有\(B\),那第一步就是将要求的\(B\)放在一起。为此,我们将右边的\(2B\)移到左边,然后求\(A-2E\)的逆矩阵就可以得到\(B\)了。我们来看完整的过程。

解: 将方程右边的2B移到左边,方程变成了
\[AB-2B=A \rightarrow (A-2E)B=A.\]
所以,只要\(A-2E\)可逆,方程的解就是
\[B=(A-2E)^{-1}A.\]

现在我们来求\(A-2E\)的逆矩阵。首先,我们要证明其可逆。
\[|A-2E|=\begin{vmatrix}
-2&3&3\\
1&-1&0\\
-1&2&1
\end{vmatrix}=
\begin{vmatrix}
1&-3&0\\
1&-1&0\\
-1&2&1
\end{vmatrix}=2\ne0\]
所以\(A-2E\)可逆。现在我们来求它的逆。

我们教材上讲了两种求逆矩阵的方法,一种是伴随矩阵的方法,另一种是初等变换法。不要傻傻地去用伴随矩阵来求逆矩阵,费力又不讨好。虽然那是最开始讲的一种方法。

求逆矩阵最简便的方法是用初等变换法。现在我们就用它来求\(A-2E\)的逆矩阵。
\[\begin{align}(A-2E,E)&=\begin{pmatrix}
-2&3&3&\vdots& 1&0&0\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{r1 + r3 \times -3}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{\stackrel{r3+r1}{\scriptsize{r2-r1}}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&2&0&\vdots& -1&1&3\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{r2\times \frac{1}{2}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{\stackrel{r1+r2\times 3}{\scriptsize{r3+r2}}}{\sim}
\begin{pmatrix}
1&0&0&\vdots& -\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&0&1&\vdots &\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\end{align}\]

所以
\[(A-2E)^{-1}=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}\]

将它乘在\(A\)的左边,就得到了\(B\):
\[\begin{align}B=(A-2E)^{-1}A&=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}\\
&=\begin{pmatrix}
0&3&3\\
-1&2&3\\
1&1&0
\end{pmatrix}
\end{align}\]

发表评论

电子邮件地址不会被公开。 必填项已用*标注