Posted on Leave a comment

如何计算对弧长的曲线积分(line integral to arc length)?

对弧长的曲线积分,通常是具有形式 \(\int_L f(x,y)ds\)(二维)或者 \(\int_L f(x,y,z)ds\)(三维)。对弧长的曲线积分,计算方法是很直接的,没有太多技巧可言,运用弧微分 \(ds\) 的公式计算即可。

  • 如果 \(L\) 是平面曲线并且由参数方程给出 \(x=\phi(t), y=\psi(t), \alpha\le t\le \beta\),那么弧微分的表达式为\[ds=\sqrt{\phi’^2(t)+\psi’^2(t)}dt,\] 所以曲线积分可以用定积分\[\int_{\alpha}^{\beta}f( \phi(t), \psi(t)) \sqrt{\phi’^2(t)+\psi’^2(t)}dt \]来计算;
  • 如果 \(L\) 是空间曲线并且由参数方程给出 \(x=\phi(t), y=\psi(t), z=\gamma(t), \alpha\le t\le \beta\),那么弧微分的表达式为\[ds=\sqrt{\phi’^2(t)+\psi’^2(t)+\gamma’^2(t)}dt,\]
    从而曲线积分可以用定积分\[\int_{\alpha}^{\beta}f( \phi(t), \psi(t),\gamma(t)) \sqrt{\phi’^2(t)+\psi’^2(t) +\gamma’^2(t) }dt \]来计算;
  • 如果 \(L\) 是平面曲线并且由函数 \(y=g(x), a\le x\le b\) 给出,则弧微分的表达式为\[ds=\sqrt{1+g’^2(x)}dx,\]从而曲线积分可以用定积分\[\int_a^bf(x,y) \sqrt{1+g’^2(x)}dx \]来计算。
发表评论

电子邮件地址不会被公开。 必填项已用*标注