Posted on Leave a comment

线性代数怎么学

  1. 线性代数的基本计算技巧是初等(行)变换。线性代数里需要用到初等变换的地方太多了,基本上贯穿了整个课程。例如解线性方程组,求逆矩阵,求特征向量,判定向量组的线性相关性等等。 初等变换的基本技术有两点:其一、按列进行,先将第一列除第一个数字外,全部化成零。然后第二列,第三列等等进行。其二,每次找个最简单的数字所在的行做为基本行,进行变换。当然最简单的数学莫过于 \(1\) 了。

    这里有详细的视频教程讲解如何进行有效的初等变换:矩阵初等变换的方法与技巧

  2. 线性代数的基本理论是线性方程组的理论。它是其它理论的基础。例如可以用它来判定向量组的线性相关性,可以用来求特征向量,可以用来判定矩阵是否可逆,可以确定一个向量是不是其它向量的线性组合等等。 线性方程组的基本理论有两个方面,解的结构和求解方法。求解方法就是高斯消元法,也就是初等变换的方法。 而解的结构,又有两个方面。齐次方程 \(A{\vec x}=0\) 和非齐次方程 \(A{\vec x}={\vec b}\)。
    • 齐次方程:
      • 方程组有非零解的充分必要条件是 \(\text {Rank} (A) < n\) 。其中 \(\text {Rank} (A)\) 可以简单地认为是行变换后,阶梯形(REF)矩阵中非零行的行数。\(n\) 是方程中未知元的个数。
      • 齐次方程组只有零解的条件是 \(\text {Rank} (A) = n\)
    • 非齐次方程:
      • 方程组无解的条件是 \(\text {Rank} (A) < \text {Rank} (A,{\vec b})\)
      • 方程组有唯一解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) = n\)
      • 方程组有无穷多个解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) < n\)
      • 方程组的通解为 \({\vec x}={\vec x_h}+{\vec \eta}\),其中 \(\vec x_h\) 是 \(A{\vec x}=0\) 的通解,\(\vec \eta\) 是非齐次方程 \(A{\vec x}={\vec b}\) 的一个(特)解。
    • 这里我们总结了线性方程组的求法:解线性方程组
  3. 第二个计算技巧是行列式的计算。在计算特征值的时候,一定会用到行列式的计算。另外,还可以用行列来判定矩阵是否可逆,向量组是否相关,还可以判定方程组有解、无解或者有无穷多个解等等。
  4. 线性方程组应用比较多的方面是特征值与特征向量,这个一定要会。在矩阵的对角化,解常微分方程组,随机过程等等方面都有应用。这部分的内容的计算,都是应用行列式和方程组的计算。
Posted on Leave a comment

如何理解极限的严格定义?

初学高等数学(或者微积分)的同学,都会觉得极限的严格定义非常难以理解。我们来试着解释一下,如何才能比较好的理解它。

我们先来回顾一下极限的严格定义:对任何的 \epsilon>0,存在 \delta>0,使得当 0<|x-a|<\delta 的时候, 不等式 |f(x)-A|<\epsilon 成立。我们就说 A 是函数 f(x)x 趋近于 a 时的极限。

第一次看到这样的定义的时候,往往连句子都读不通顺,更别说里面的数学含义了。我们更习惯的是极限的直观定义:当 x 越来越接近于 a 时,f(x) 越来越接近数 A,我们就说当 x 趋近于 a 的时候 ,函数 f(x) 的极限是 A.

举个例子,当 x 越来越接近于 2 时, x^2 越来越接近于 4,我们就说 4x^2x 趋近于 2 时的极限。

这样的句子我们比较能够接受,也容易理解。问题是,这样的表述在数学上是不严谨的。“越来越接近”是多接近?这在数学上是不能够被接受的。

稍微数学(严格)一点的说法是:当 x 充分接近 a 时,函数 f(x) 可以无限接近于 A,……。当然这样的句子我们还是能够理解,知道意思跟前面的直观定义也差不多。但还是不够。

事实上,极限的严格定义只是将我们的直观定义用数学语言描述了一遍,我们仍然可以是直观的定义去理解。

我们说 x 充分接近于 a,那么就是说 xa 的距离足够近,而描述距离的数学方式,就是两个数之差的绝对值;足够近,就是两个数的距离足够小,而足够小就是它的值应该小于某个很小的数,这个数就是我们要找的 \delta

那么如何用数学语言或者数学式子描写“无限接近”?我们刚才讲了“接近” 就是距离,那么无限接近是什么?就是距离可以无限小。那么如何描写无限小?我们知道距离是正数,如果距离无限小,就是距离无限接近于 0。距离无限接近于 0,而又因为 0 小于任何正数,所以距离无限小就是它可以小于任何正数。所以说对于任何正数 \epsilon|f(x)-A|<\epsilon,那么 f(x) 就是无限接近于 A 了。

所以说,极限的严格定义,只是将我们以前的直观定义用严格的数学语言重新表述了一遍而已,我们大可以从前的直观定义来理解极限,而不用纠结于这个严格的定义。因为即使不理解这个定义,也不影响你后续内容的学习。

相关内容的视频可以在这里找到:极限的严格定义