如何求矩阵的逆矩阵?

求逆矩阵最有效的方法是初等变换法(虽然还有别的方法)。如果要求方阵 \(A\) 的逆矩阵,标准的做法是将 \([A I]\) 做初等变换,如果 \(A\) 化成了单位矩阵,则单位矩阵化成了 \(A\) 的逆矩阵。

求逆矩阵最有效的方法是初等变换法(虽然还有别的方法)。如果要求方阵 \(A\) 的逆矩阵,标准的做法是:

  • 将矩阵 \(A\) 与单位矩阵 \(I\) 排成一个新的矩阵 \((A \quad I)\)
  • 将此新矩阵 \(( A \quad I )\) 做初等行变换,将它化成 \(( I \quad B )\) 的形式
  • \(B=A^{-1}\)

若 \(A\) 是一个二阶方阵

\[A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}\]

则它的逆矩阵可以直接使用公式

\[A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}d&-b\\ -c&a\end{pmatrix}\]

来计算。我们来看几个例子。

例1:求二阶矩阵

\[A=\begin{pmatrix}8&6\\ 5&4\end{pmatrix}\]

的逆矩阵。

解:因为矩阵是二阶矩阵,我们可以直接利用二阶逆矩阵的公式来求解。

\[\begin{align*}A^{-1}&=\frac{1}{8\cdot4-6\cdot5}\begin{pmatrix}4&-6\\ -5&8\end{pmatrix} \\& =\frac{1}{2}\begin{pmatrix} 4&-6\\ -5&8 \end{pmatrix}= \begin{pmatrix} 2&-3\\ -\frac{5}{2}&4 \end{pmatrix}\end{align*}\]

例2:求矩阵

\[A= \begin{pmatrix} 1&0&-2\\ -3&1&4\\ 2&-3&4\end{pmatrix} \]

的逆矩阵。

解:这是一个三阶的矩阵,最简便有效的方法是初等变换法。(你可以试试用伴随矩阵的方法来求,计算量比初等变换法相差多大)我们将矩阵与单位矩阵排在一起,然后做初等变换

\[\begin{align*}(A\quad I)&=\begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ -3&1&4 &\vdots& 0&1&0\\ 2&-3&4 &\vdots& 0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&-3&8 &\vdots& -2&0&1\end{pmatrix}\\ &\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\\&\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&1 &\vdots& \frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \end{align*}\]

所以我们得到

\[A^{-1}= \begin{pmatrix} 8&3&1\\ 10&4&1\\\frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \]

我们看到的这个矩阵是三阶的,利用初等变换计算逆矩阵已经比伴随矩阵法少了很多的计算量了。实际上,矩阵的阶数越高,节约下来的计算量越多。利用伴随矩阵计算逆矩阵,三阶矩阵的话,需要计算一个三阶行列式,九个二阶行列式。四阶的话,需要计算一个四阶行列式,十六个三阶行列式,手算的话,已经让人难以接受了。

我们来看一个四阶矩阵的逆矩阵。

例3:求矩阵

\[A=\begin{pmatrix}1&2&3&4\\ 2&3&1&2\\ 1&1&1&-1\\ 1&0&-2&-6\end{pmatrix}\]

的逆矩阵。

解:我们将下述矩阵做初等变换

\[ \begin{align*} (A\quad I)&= \begin{pmatrix}1&2&3&4 &\vdots &1&0&0&0\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&0&-2&-6 &\vdots &0&0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&2&3&4 &\vdots &1&0&0&0 \end{pmatrix} \\& \sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&3&5&14 &\vdots &0&1&0&-2\\ 0&1&3&5 &\vdots &0&0&1&-1\\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&3&5&14 &\vdots &0&1&0&-2 \\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&0 &\vdots &24&-6&-30&19\\ 0&1&3&0 &\vdots &-20&5&26&-16 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix} \\ &\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&1&0 &\vdots &-1&0&2&-1 \\ 0&0&0&1 &\vdots &4&-1&-5&3 \end{pmatrix} \end{align*}\]

所以,我们得到

\[A^{-1}= \begin{pmatrix} 22&-6&-26&17\\ -17&5&20&-13 \\ -1&0&2&-1 \\ 4&-1&-5&3 \end{pmatrix} \]

如何求一个向量组的极大无关组,以及如何用极大无关组线性表示其它向量?

我们求向量的极大无关组,并且把其它向量用极大无关组表示的方法和步骤是:先将向量组排成一个矩阵,对此矩阵作初等行变换,化成行最简矩阵。每个非零行的第一个非零元所在的列所对应的向量为极大无关组的向量。而其它向量的表示 可以直接从行最简矩阵得到。

我们求向量的极大无关组,并且把其它向量用极大无关组表示的方法和步骤是:

  • 首先将所有列向量排成一个矩阵(如果是行向量, 先转置成列向量);
  • 将所得到的矩阵作初等行变换,化成行最简矩阵;
  • 每个非零行的第一个非零元(\(1\))所在的列,所对应原矩阵的列向量,就是极大无关组的向量,所有这些向量组成了极大无关组;
  • 行最简矩阵的列向量之间的关系,与原矩阵的列向量组之间的关系是一样的。也就是说,极大无关组与其它向量的关系,与行最简矩阵里列向量的关系一样。

这里我们说明一下:极大无关组可以有不同的选择,但是我们这里的选择方式比较直观,不容易出错,而且向量之间的关系一目了然,最容易计算,易于操作。

现在我们举例说明如何使用这种方法。

例:设有向量组

\[\vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_3=\begin{pmatrix}9\\6\\-6\\9\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix},\quad \vec{a}_5=\begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix}\]

求该向量组的一个极大无关组,并把其它向量用极大无关组表示。

解:我们先把向量组排成一个矩阵

\[A=( \vec{a}_1 \quad \vec{a}_2 \quad \vec{a}_3 \quad \vec{a}_4 \quad \vec{a}_5 )=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix}\]

对此矩阵作初等变换,将矩阵化成行最简矩阵 (省去中间步骤) ,我们有

\[\begin{align*}A=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix} \sim \begin{pmatrix} 1&0&3&0&0\\ 0&1&-3&0&-7\\ 0&0&0&1&-2\\ 0&0&0&0&0 \end{pmatrix} \end{align*}\]

我们看到,非零行是一、二、三行,第一行第一个非零元在第一列,它对应 \(\vec{a}_1\),第二行的第一个非零元在第二列,它对应 (\vec{a}_2\),第三行的第一个非零元在第四列,它对应 (\vec{a}_4\),所以原向量组的一个极大无关组为

\[ \vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

现在我们将 \( \vec{a}_3 , \vec{a}_5\) 用极大无关组表示。因为在行最简矩阵里,第三列与第一、二、四列的关系为

\[\begin{pmatrix}3\\-3\\0\\0\end{pmatrix}=3\begin{pmatrix}1\\0\\0\\0\end{pmatrix}-3 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} \]

所以

\[\vec{a}_3=3\vec{a}_1-3\vec{a}_2,\quad \text{即} \begin{pmatrix}9\\6\\-6\\9\end{pmatrix} =3 \begin{pmatrix}1\\1\\-2\\4\end{pmatrix} -3 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix} \]

再从行最简矩阵第五列与第一、二、四列的关系

\[\begin{pmatrix}14\\-7\\-2\\0\end{pmatrix}=-7 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} -2 \begin{pmatrix}0\\0\\1\\0\end{pmatrix} \]

知道

\[\vec{a}_5=-7\vec{a}_2-2\vec{a}_4,\quad \text{即} \begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix} =-7 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix}-2 \begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

可以验算一下,这两个表示式是正确的。