线性代数必会技巧细说

线性代数所有的计算基本上基于一个技巧:初等变换。如果掌握初等变换及其相应的计算,线性代数就变得容易了。

公共课的线性代数,它的所有的计算基本上基于两个技巧:初等变换,行列式的计算。当然,这里不包括数学系的线性代数或者高等代数课程,数学系的线性代数或者高等代数,不以计算为主。

公共课的线性代数,计算基本上离不开这两个技巧。甚至,可以将行列式的计算也归入到初等变换中来,这样,线性代数的计算技巧就只有一个:初等变换。掌握了这个技巧,那么线性代数的计算将不是一个问题。我们将这个题目细细地述说一下。

一、解线性方程组及判定方程组有解无解:只需要将系数矩阵(齐次线性方程组)或者增广矩阵(非齐次线性方程组)作初等变换,将它们化成行最简矩阵,则可以直接写出方程组的解(或者判定方程组有解无解)。例如,对线性方程组 \(A\vec{x}=\vec{b}\),其中
\[A=
\begin{pmatrix}
1& 1& 2& 3\\
2& 0& 0& 2\\
3 &2& 4& 7
\end{pmatrix},\quad
\vec{b}=
\begin{pmatrix}
1\\
4\\
4
\end{pmatrix}
\]

的增广矩阵作初等变换,化成行最简矩阵,

\[
(A,\vec{b})=
\begin{pmatrix}
1& 1& 2& 3 &\vdots& 1\\
2& 0& 0& 2&\vdots& 4\\
3 &2& 4& 7 &\vdots& 4
\end{pmatrix}
\sim
\begin{pmatrix}
1& 0& 0&1 &\vdots&2\\
0& 1& 2& 2&\vdots& -1\\
0 &0& 0& 0&\vdots& 0
\end{pmatrix}
\]

则方程组的解为

\[
\vec{\xi}=c_1
\begin{pmatrix}
0\\
-2\\
1\\
0
\end{pmatrix}+c_2
\begin{pmatrix}
-1\\
-2\\
0\\
1
\end{pmatrix}+
\begin{pmatrix}
2\\
-1\\
0\\
0
\end{pmatrix}
\]

这一部分,可以参考文章如何快速地写出方程组的解?

二、求行列式。求数字行列式的基本方法是降阶法,就是先用初等变换,将行列式的一行或者一列化成只有一个不为 \(0\),然后按这一行或者这一列展开,行列的阶就降了一阶,依次进行,最后变成二阶行列式,就可以利用二阶行列式的公式计算了。例如

\begin{align*}|A|&=\begin{vmatrix}1&1&-1&3\\ -1&-1&2&1\\ 2&5&2&4\\ 1&2&3&2\end{vmatrix}=\begin{vmatrix}1&1&-1&3\\ 0&0&1&4\\0&3&4&-2\\0&1&4&-1\end{vmatrix}\\&=\begin{vmatrix} 0&1&4\\3&4&-2\\1&4&-1\end{vmatrix}=\begin{vmatrix} 0&1&4\\0&-8&1\\1&4&-1\end{vmatrix}=\begin{vmatrix} 1&4\\-8&1\end{vmatrix}=33\end{align*}

就是先将第一列化成只有一个元素不为 \(0\),然后再将行列式按第一列展开,从四阶变成三阶;然后再做初等变换,将新的行列式的第一列化成只一个元素不为 \(0\),再按照第一列展开,变成二阶行列式,最后利用二阶行列式的公式得到了行列式的值。

这一部分,可以参考课程行列式的性质及其计算

三、求逆矩阵。求逆矩阵的方法是将方阵与单位矩阵横排成一个新的矩阵,再对这个矩阵作初等变换,当矩阵的左边,就是原方阵,变成单位矩阵的时候,右边的矩阵,就是单位矩阵就变成了原方阵的逆矩阵了。例如,求 \(A=\begin{pmatrix}0&1&2\\ 1&0&3\\ 4&-3&8\end{pmatrix}\) 的逆矩阵。

\begin{align*}(A,I)&=\begin{pmatrix}0&1&2&\vdots&1&0&0\\ 1&0&3&\vdots&0&1&0\\ 4&-3&8&\vdots&0&0&1\end{pmatrix}\sim\begin{pmatrix}1&0&3&\vdots&0&1&0\\0&1&2&\vdots&1&0&0\\ 4&-3&8&\vdots&0&0&1\end{pmatrix} \\ &\sim \begin{pmatrix}1&0&3&\vdots&0&1&0\\0&1&2&\vdots&1&0&0\\ 0&-3&-4&\vdots&0&-4&1\end{pmatrix}\sim \begin{pmatrix}1&0&3&\vdots&0&1&0\\0&1&2&\vdots&1&0&0\\ 0&0&1&\vdots&\frac{3}{2}&-2&\frac{1}{2}\end{pmatrix}\\ &\sim \begin{pmatrix}1&0&0&\vdots&-\frac{9}{2}&7&-\frac{3}{2}\\0&1&0&\vdots&-2&4&-1\\ 0&0&1&\vdots&\frac{3}{2}&-2&\frac{1}{2}\end{pmatrix}\end{align*}

所以 \(A^{-1}=\begin{pmatrix}-\frac{9}{2}&7&-\frac{3}{2}\\-2&4&-1\\ \frac{3}{2}&-2&\frac{1}{2}\end{pmatrix}\)

这一部分,可以参考文章如何求矩阵的逆矩阵?

四、判断向量组线性相关还是线性无关。具体做法是,将(列)向量组横排成一个矩阵,然后将这个矩阵作初等变换,如果矩阵的秩(就是行阶梯矩阵的非零行的行数)小于向量的个数,就是线性相关;如果等于向量的个数,就是线性无关。例如,\(\vec{a}_1=\begin{pmatrix}1\\-1\\0\end{pmatrix}, \vec{a}_2=\begin{pmatrix}1\\2\\0\end{pmatrix}, \vec{a}_3=\begin{pmatrix}1\\0\\3\end{pmatrix}\), 问 \(\vec{a}_1,\vec{a}_2,\vec{a}_3\) 是线性相关还是线性无关?

解法是,

\begin{align*}A&=(\vec{a}_1,\vec{a}_2,\vec{a}_3)=\begin{pmatrix}1&1&1\\ -1&2&0\\ 0&0&3\end{pmatrix}\sim \begin{pmatrix}1&1&1\\ 0&3&1\\ 0&0&3\end{pmatrix}\end{align*}

\(R(A)=3\),所以向量组线性无关。

五、求向量组的极大无关组,以及将其它向量用极大无关组线性表示。做法是,将(列)向量组横排成一个矩阵,将这个矩阵做初等变换,化成行最简矩阵,行最简矩阵的每一个非零行的第一个非零元所在的列,对应原矩阵的列向量,就是极大无关组的向量。行最简矩阵的各列之间的关系,就是原矩阵各向量之间的关系。例如,求向量组\[\vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix}, \vec{a}_3=\begin{pmatrix}9\\6\\-6\\9\end{pmatrix},\vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix},\vec{a}_5=\begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix}\] 的极大无关组,并且将其它向量用极大无关组线性表示。

\[( \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 , \vec{a}_5 )=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix}\sim \begin{pmatrix} 1&0&3&0&0\\ 0&1&-3&0&-7\\ 0&0&0&1&-2\\ 0&0&0&0&0 \end{pmatrix} \]

所以原向量组的一个极大无关组为

\[ \vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

而其它两个向量可以用极大无关组表示

\[\vec{a}_3=3\vec{a}_1-3\vec{a}_2,\quad \vec{a}_5=-7\vec{a}_2-2\vec{a}_4 \]

这一部分的内容,可以参考文章如何求一个向量组的极大无关组,以及如何用极大无关组线性表示其它向量?

六、特征值、特征向量、矩阵的对角化。求特征值本质就是求行列式 \(|A-\lambda I|\),求特征向量就是解线性方程组 \((A-\lambda I)\vec{x}=0\),矩阵对角化就是将特征向量排成一个矩阵,就是前面几个部分的综合应用。这部分可以参考 线性代数复习:特征值、特征向量与矩阵对角化

七、行列式的计算:具体的数字行列式的计算,是利用初等变换得到。但也有一些计算方法,例如递推法,拆分法,是利用行列式的性质来进行计算,这些计算方法可以了解,不需要花大力气去掌握。实际上,行列的计算方法还有很多很多种,只是行列式在现代的线性代数里,没有一百多年前那么重要了,所以也没有必要花费太多的时间去研究。

八、正交化和投影。这是另一个不需要初等变换的地方,但需要掌握。这是内积空间的主要计算部分。

所以总的来说,如果初等变换不掌握,挂科、重修基本上是板上订钉的事儿了。当然如果掌握了上面所说的几个部分,线性代数应该就不太难了,不要说这门课有多精通,考试过关应该不成问题的。

如何用很少的几个习题复习好线性代数?

们现在来看看,如何用最少的几个习题将这门课的重点都复习到。

线性代数的知识点很分散,复习很不容易抓住要点。我们现在来看看,如何用最少的几个习题将这门课的重点都复习到。

我们可以这样选题:

  • 解一个非齐次的线性方程组;
  • 找一个带一、两个参数的线性方程组,判断它什么时候无解、有唯一解及有无穷个解;
  • 将一个方阵对角化;
  • 求一个向量组的极大无关组,并将其它向量用极大无关组表示;
  • 求一个四阶或者五阶的行列式;
  • 求一个方阵的逆矩阵;
  • 判断一个向量组是否线性无关;
  • 用正交变换将一个实对称矩阵对角化;
  • 求一个 \(n\) 阶行列式

如果这几个题你都可以自如地应付,那么线性代数这门课程你基本上不用担心了。因为这些题基本上涵盖了线性代数这门课程的主要内容。我们可以来分析一下。

第一个,解线性方程组,它基本上用到了线性方程组解的结构。从解线性方程组,你可以知道齐次线性方程组的基础解系怎么求,以及非齐次方程组与齐次方程组的解之间的关系。

第二个,判断线性方程组是否有解,是唯一解还是无穷多个解。这里涉及的内容有线性方程组解的理论,矩阵的秩,秩与解的关系。

第三个,矩阵对角化。矩阵对角化的步骤是:求特征值,求特征向量,将特征向量排成一个矩阵。这里就复习了特征值、特征向量以及相似矩阵的内容。

第四个,极大无关组及用极大无关组表示其它向量。这里复习了向量的线性表示,线性相关及线性无关的概念。重点是怎么找极大无关组,它也是矩阵的列空间的基。

前面这四个,考试的时候大多是以大题的形式出现,所以要优先复习而且一定掌握。

第五个,求行列式,一般都是用降阶法,它用到了行列式的性质和行列式展开。

第六个,求方阵的逆矩阵(初等变换法)。矩阵内容里面很大一部分内容都是为求逆矩阵作准备。为了得到用实现用初等变换求逆矩阵,引入了初等矩阵,然后将初等矩阵与初等变换联系起来,目的就是为了用初等变换求逆矩阵。

第七个,判断一个向量组是否线性相关。相关的内容是线性相关与线性无关的概念,以及线性相关性与齐次方程的解之间的关系。还有一个就是矩阵的秩。只要矩阵的秩小于向量的个数,就是线性相关的。

第八个,实对称矩阵的对角化。用正交变换化实对称矩阵为对角阵,不光是复习特征值、特征向量,还复习了向量组的正交性以及施密特正交化方法。

最后一个, \(n\) 阶行列式的计算,基本上是行列的按行或列展开加上递推式,偶而也可以直接利用初等变换求出。

你可以看一下,线性代数的内容差不多也就这些了。

怎么找矩阵的列空间与零空间?

把矩阵变成行阶梯形后,列空间 \(\text{Col} A\)的基就是每一个非零行,第一个非零元所在的列,对应的原矩阵里的列;而零空间就是 \(A\vec{x}=0\) 的解空间。

矩阵的列空间与零空间,听起来很难的样子,其实求它们并不算很难的一件事。在做完初等行变换,把矩阵变成行阶梯形后,列空间 \(\text{Col} A\)的基就很容易得到了,而求零空间 \(\text{Null}A\),其实就是求齐次方程的解空间。我们来具体讲一下怎么求这两个空间。

因为向量空间完全可以由其基表示,所以只要求出它的基就可以。现在我们讲一讲怎么求列空间的基。只需要两步就可以。
第一步:将矩阵化成行阶梯形;
第二步:找出每一个非零行,第一个非零元所在的列,对应的原矩阵里的列,就是列空间的基。

我们来看一个例子:设\(A\) 为如下的矩阵
\[
\begin{pmatrix}
1&4&8&-3&-7\\
-1&2&7&3&4\\
-2&2&9&5&5\\
3&6&9&-5&-2
\end{pmatrix}\]

通过初等行变换,它可以变成

\[
\begin{pmatrix}
1&4&8&0&5\\
0&2&5&0&-1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\]

现在已经变成了行阶梯形矩阵了。我们只需要找到每个非零行的首个非零元就知道列空间的基了。第一、二、三行都是非零行,它们的首个非零元在第一、二、四列,所以,列空间的基是原矩阵里的第一、二、四列,也就是说,\(Col A\) 的基由下列三个向量组成:

\[
\begin{pmatrix}
1\\
-1\\
-2\\
3
\end{pmatrix},
\begin{pmatrix}
4\\
2\\
2\\
6\end{pmatrix},
\begin{pmatrix}
-3\\
3\\
5\\
-5
\end{pmatrix}
\]

或者说 \[{\rm Col} A= {\rm span}\left(\begin{pmatrix}
1\\
-1\\
-2\\
3
\end{pmatrix},
\begin{pmatrix}
4\\
2\\
2\\
6\end{pmatrix},
\begin{pmatrix}
-3\\
3\\
5\\
-5
\end{pmatrix}\right)\]

现在我们转到怎么找零空间。由零空间的定义,\(Null A=\{\vec{x}|A\vec{x}=0\}\),所以,找零空间就是解方程组 \(A\vec{x}=0\}\) 。我们仍然以上面的 \(A\) 为例。我们先将它化成行最简形(RREF)
\[
\begin{pmatrix}
1&4&8&0&5\\
0&2&5&0&-1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\sim
\begin{pmatrix}
1&0&-2&0&-3\\
0&1&\frac{5}{2}&0&-\frac{1}{2}\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

它的解是
\[\vec{x}=
C_1\begin{pmatrix}
2\\
-\frac{5}{2}\\
1\\
0\\
0
\end{pmatrix}+C_2
\begin{pmatrix}
3\\
\frac{1}{2}\\
0\\
-4\\
1
\end{pmatrix}
\]

所以零空间是
\[
Null A={\rm span}\left(\begin{pmatrix}
2\\
-\frac{5}{2}\\
1\\
0\\
0
\end{pmatrix},
\begin{pmatrix}
3\\
\frac{1}{2}\\
0\\
-4\\
1
\end{pmatrix}\right)
\]

如何求矩阵的逆矩阵?

求逆矩阵最有效的方法是初等变换法(虽然还有别的方法)。如果要求方阵 \(A\) 的逆矩阵,标准的做法是将 \([A I]\) 做初等变换,如果 \(A\) 化成了单位矩阵,则单位矩阵化成了 \(A\) 的逆矩阵。

求逆矩阵最有效的方法是初等变换法(虽然还有别的方法)。如果要求方阵 \(A\) 的逆矩阵,标准的做法是:

  • 将矩阵 \(A\) 与单位矩阵 \(I\) 排成一个新的矩阵 \((A \quad I)\)
  • 将此新矩阵 \(( A \quad I )\) 做初等行变换,将它化成 \(( I \quad B )\) 的形式
  • \(B=A^{-1}\)

若 \(A\) 是一个二阶方阵

\[A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}\]

则它的逆矩阵可以直接使用公式

\[A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}d&-b\\ -c&a\end{pmatrix}\]

来计算。我们来看几个例子。

例1:求二阶矩阵

\[A=\begin{pmatrix}8&6\\ 5&4\end{pmatrix}\]

的逆矩阵。

解:因为矩阵是二阶矩阵,我们可以直接利用二阶逆矩阵的公式来求解。

\[\begin{align*}A^{-1}&=\frac{1}{8\cdot4-6\cdot5}\begin{pmatrix}4&-6\\ -5&8\end{pmatrix} \\& =\frac{1}{2}\begin{pmatrix} 4&-6\\ -5&8 \end{pmatrix}= \begin{pmatrix} 2&-3\\ -\frac{5}{2}&4 \end{pmatrix}\end{align*}\]

例2:求矩阵

\[A= \begin{pmatrix} 1&0&-2\\ -3&1&4\\ 2&-3&4\end{pmatrix} \]

的逆矩阵。

解:这是一个三阶的矩阵,最简便有效的方法是初等变换法。(你可以试试用伴随矩阵的方法来求,计算量比初等变换法相差多大)我们将矩阵与单位矩阵排在一起,然后做初等变换

\[\begin{align*}(A\quad I)&=\begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ -3&1&4 &\vdots& 0&1&0\\ 2&-3&4 &\vdots& 0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&-3&8 &\vdots& -2&0&1\end{pmatrix}\\ &\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\\&\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&1 &\vdots& \frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \end{align*}\]

所以我们得到

\[A^{-1}= \begin{pmatrix} 8&3&1\\ 10&4&1\\\frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \]

我们看到的这个矩阵是三阶的,利用初等变换计算逆矩阵已经比伴随矩阵法少了很多的计算量了。实际上,矩阵的阶数越高,节约下来的计算量越多。利用伴随矩阵计算逆矩阵,三阶矩阵的话,需要计算一个三阶行列式,九个二阶行列式。四阶的话,需要计算一个四阶行列式,十六个三阶行列式,手算的话,已经让人难以接受了。

我们来看一个四阶矩阵的逆矩阵。

例3:求矩阵

\[A=\begin{pmatrix}1&2&3&4\\ 2&3&1&2\\ 1&1&1&-1\\ 1&0&-2&-6\end{pmatrix}\]

的逆矩阵。

解:我们将下述矩阵做初等变换

\[ \begin{align*} (A\quad I)&= \begin{pmatrix}1&2&3&4 &\vdots &1&0&0&0\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&0&-2&-6 &\vdots &0&0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&2&3&4 &\vdots &1&0&0&0 \end{pmatrix} \\& \sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&3&5&14 &\vdots &0&1&0&-2\\ 0&1&3&5 &\vdots &0&0&1&-1\\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&3&5&14 &\vdots &0&1&0&-2 \\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&0 &\vdots &24&-6&-30&19\\ 0&1&3&0 &\vdots &-20&5&26&-16 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix} \\ &\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&1&0 &\vdots &-1&0&2&-1 \\ 0&0&0&1 &\vdots &4&-1&-5&3 \end{pmatrix} \end{align*}\]

所以,我们得到

\[A^{-1}= \begin{pmatrix} 22&-6&-26&17\\ -17&5&20&-13 \\ -1&0&2&-1 \\ 4&-1&-5&3 \end{pmatrix} \]

如何求一个向量组的极大无关组,以及如何用极大无关组线性表示其它向量?

我们求向量的极大无关组,并且把其它向量用极大无关组表示的方法和步骤是:先将向量组排成一个矩阵,对此矩阵作初等行变换,化成行最简矩阵。每个非零行的第一个非零元所在的列所对应的向量为极大无关组的向量。而其它向量的表示 可以直接从行最简矩阵得到。

我们求向量的极大无关组,并且把其它向量用极大无关组表示的方法和步骤是:

  • 首先将所有列向量排成一个矩阵(如果是行向量, 先转置成列向量);
  • 将所得到的矩阵作初等行变换,化成行最简矩阵;
  • 每个非零行的第一个非零元(\(1\))所在的列,所对应原矩阵的列向量,就是极大无关组的向量,所有这些向量组成了极大无关组;
  • 行最简矩阵的列向量之间的关系,与原矩阵的列向量组之间的关系是一样的。也就是说,极大无关组与其它向量的关系,与行最简矩阵里列向量的关系一样。

这里我们说明一下:极大无关组可以有不同的选择,但是我们这里的选择方式比较直观,不容易出错,而且向量之间的关系一目了然,最容易计算,易于操作。

现在我们举例说明如何使用这种方法。

例:设有向量组

\[\vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_3=\begin{pmatrix}9\\6\\-6\\9\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix},\quad \vec{a}_5=\begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix}\]

求该向量组的一个极大无关组,并把其它向量用极大无关组表示。

解:我们先把向量组排成一个矩阵

\[A=( \vec{a}_1 \quad \vec{a}_2 \quad \vec{a}_3 \quad \vec{a}_4 \quad \vec{a}_5 )=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix}\]

对此矩阵作初等变换,将矩阵化成行最简矩阵 (省去中间步骤) ,我们有

\[\begin{align*}A=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix} \sim \begin{pmatrix} 1&0&3&0&0\\ 0&1&-3&0&-7\\ 0&0&0&1&-2\\ 0&0&0&0&0 \end{pmatrix} \end{align*}\]

我们看到,非零行是一、二、三行,第一行第一个非零元在第一列,它对应 \(\vec{a}_1\),第二行的第一个非零元在第二列,它对应 (\vec{a}_2\),第三行的第一个非零元在第四列,它对应 (\vec{a}_4\),所以原向量组的一个极大无关组为

\[ \vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

现在我们将 \( \vec{a}_3 , \vec{a}_5\) 用极大无关组表示。因为在行最简矩阵里,第三列与第一、二、四列的关系为

\[\begin{pmatrix}3\\-3\\0\\0\end{pmatrix}=3\begin{pmatrix}1\\0\\0\\0\end{pmatrix}-3 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} \]

所以

\[\vec{a}_3=3\vec{a}_1-3\vec{a}_2,\quad \text{即} \begin{pmatrix}9\\6\\-6\\9\end{pmatrix} =3 \begin{pmatrix}1\\1\\-2\\4\end{pmatrix} -3 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix} \]

再从行最简矩阵第五列与第一、二、四列的关系

\[\begin{pmatrix}14\\-7\\-2\\0\end{pmatrix}=-7 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} -2 \begin{pmatrix}0\\0\\1\\0\end{pmatrix} \]

知道

\[\vec{a}_5=-7\vec{a}_2-2\vec{a}_4,\quad \text{即} \begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix} =-7 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix}-2 \begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

可以验算一下,这两个表示式是正确的。

如何用配方法将不含平方项的二次型化成标准形?

对于没有平方项的二次型,我们可以利用平方差公式,\((a+b)(a-b)=a^2-b^2\)将混合项化成标准形。

一般情况下,我们使用配方法化二次型为标准形的时候,用的是完全平方公式 \((a+b)^2=a^2+2ab+b^2\),如果多项式里有 \(a^2+2ab\),那么我们可以通过加一项 \(b^2\) 再减一项 \(b^2\) 的方法达到将这两项化成只剩下平方项的目的。也就是说

\[a^2+2ab=a^2+2ab+b^2-b^2=( a^2+2ab+b^2 )-b^2=(a+b)^2-b^2\]

这样,就只剩下两个平方项了。只要令 \(x=(a+b),y=b\),上式就可以变成\(x^2-y^2\),就是一个标准的二次型。

但是有些二次型,没有平方项,只有混合项,那么这个方法就不可以用了。那么怎么办呢?这个时候我们可以利用平方差公式,\((a+b)(a-b)=a^2-b^2\)将混合项化成标准形。例如,只有一项 \(x_1x_2\),那么令 \(x_1=y_1+y_2, x_2=y_1-y_2\),那么 \(x_1x_2=(y_1+y_2)(y_1-y_2)=y_1^2-y_2^2\)。这就是将不含平方项的二次型化成标准形的方法。

我们来看一个例子:用配方法将二次型

\[f(x_1,x_2,x_3)=x_1x_2+x_1x_3+x_2x_3\]化成标准形。

解:令 \(x_1=y_1+y_2, x_2=x_1-y_2, x_3=y_3\),则

\[ \begin{align*}f=x_1x_2+x_1x_3+x_2x_3 &=(y_1+y_2)(y_1-y_2)+(y_1+y_2)y_3+(y_1-y_2)y_3\\ &=y_1^2-y_2^2+2y_1y_3\end{align*}\]

再对 \(y_1,y_3\) 进行配方,因为 \(y_1^2+2y_1y_3=(y_1+y^3)^2-y_3^2\),所以只要令 \(z_1=y_1+y_3, z_2=y_2, z_3=y_3\),则二次型变成\[f=z_1^2-z_2^2-z_3^2\]

线性代数怎么学

这里讲解线性代数有哪些重点与关键内容,以及如何高效地学习线性代数。

  1. 线性代数的基本计算技巧是初等(行)变换。线性代数里需要用到初等变换的地方太多了,基本上贯穿了整个课程。例如解线性方程组,求逆矩阵,求特征向量,判定向量组的线性相关性等等。 初等变换的基本技术有两点:其一、按列进行,先将第一列除第一个数字外,全部化成零。然后第二列,第三列等等进行。其二,每次找个最简单的数字所在的行做为基本行,进行变换。当然最简单的数学莫过于 \(1\) 了。

    这里有详细的视频教程讲解如何进行有效的初等变换:矩阵初等变换的方法与技巧

  2. 线性代数的基本理论是线性方程组的理论。它是其它理论的基础。例如可以用它来判定向量组的线性相关性,可以用来求特征向量,可以用来判定矩阵是否可逆,可以确定一个向量是不是其它向量的线性组合等等。 线性方程组的基本理论有两个方面,解的结构和求解方法。求解方法就是高斯消元法,也就是初等变换的方法。 而解的结构,又有两个方面。齐次方程 \(A{\vec x}=0\) 和非齐次方程 \(A{\vec x}={\vec b}\)。
    • 齐次方程:
      • 方程组有非零解的充分必要条件是 \(\text {Rank} (A) < n\) 。其中 \(\text {Rank} (A)\) 可以简单地认为是行变换后,阶梯形(REF)矩阵中非零行的行数。\(n\) 是方程中未知元的个数。
      • 齐次方程组只有零解的条件是 \(\text {Rank} (A) = n\)
    • 非齐次方程:
      • 方程组无解的条件是 \(\text {Rank} (A) < \text {Rank} (A,{\vec b})\)
      • 方程组有唯一解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) = n\)
      • 方程组有无穷多个解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) < n\)
      • 方程组的通解为 \({\vec x}={\vec x_h}+{\vec \eta}\),其中 \(\vec x_h\) 是 \(A{\vec x}=0\) 的通解,\(\vec \eta\) 是非齐次方程 \(A{\vec x}={\vec b}\) 的一个(特)解。
    • 这里我们总结了线性方程组的求法:解线性方程组
  3. 第二个计算技巧是行列式的计算。在计算特征值的时候,一定会用到行列式的计算。另外,还可以用行列来判定矩阵是否可逆,向量组是否相关,还可以判定方程组有解、无解或者有无穷多个解等等。
  4. 线性方程组应用比较多的方面是特征值与特征向量,这个一定要会。在矩阵的对角化,解常微分方程组,随机过程等等方面都有应用。这部分的内容的计算,都是应用行列式和方程组的计算。

怎么求矩阵的特征值

方阵的特征值的计算历来是线性代数课程里较难掌握的一部分。它不仅涉及到带字母的行列式的计算,还包含了多项的求根的过程。这里我们来讲解矩阵特征值的求法。

方阵的特征值的计算历来是线性代数课程里较难掌握的一部分。它不仅涉及到带字母的行列式的计算,还包含了多项的求根的过程。现在我们来看看矩阵特征值的求法。

例 :求矩阵
\[A=\begin{pmatrix}
1&-2&4\\
2&3&1\\
1&1&1
\end{pmatrix}\]
的特征值.

求方阵\(A\)的特征值, 就是求多项式 \(|A-\lambda I|\) 的根. 它的基本步骤是这样的:

  1. 求出行列式 \(|A-\lambda I|\) , 它是一个关于 \(\lambda\) 的多项式 (就是特征多项式);
  2. 令多项式 \(|A-\lambda I |\) = 0, 求出 \(\lambda\) 的值 (就是特征值, 或者特征根)

现在我们来看这个题的完整的解法.

解:\(A\) 的特征多项式为
\[|A-\lambda I|=\begin{vmatrix}
1-\lambda&-2&4\\
2&3-\lambda&1\\
1&1&1-\lambda
\end{vmatrix}\]

先交换1, 3 两行,再将第一行乘以 \(-2\) 加到第二行, 乘以 \(\lambda-1\)加到第三行, 再对第一列展开, 就得到
\[\begin{align}|A-\lambda I|&=\begin{vmatrix}
1-\lambda&-2&4\\
2&3-\lambda&1\\
1&1&1-\lambda
\end{vmatrix}\\
&=-\begin{vmatrix}
1&1&1-\lambda\\
0&1-\lambda&-1+2\lambda\\
0&-3+\lambda&4-(1-\lambda)^2
\end{vmatrix}\\
&=-\begin{vmatrix}
1-\lambda&-1+2\lambda\\
-3+\lambda&4-(1-\lambda)^2
\end{vmatrix}
\end{align}\]

把第一列提出因子\(-1\), 并将第2 行第2 列的元素展开,可得
\[|A-\lambda I|=
\begin{vmatrix}
\lambda-1&-1+2\lambda\\
-\lambda+3&(1+\lambda)(3-\lambda)
\end{vmatrix}=
(3-\lambda)\begin{vmatrix}
\lambda-1&-1+2\lambda\\
1&1+\lambda
\end{vmatrix}=(\lambda-3)(-\lambda)(\lambda-2).
\]

令\(|A-\lambda I|=0\), 就得到了方阵\(A\) 的特征值为 \(\lambda_1=3, \lambda_2=0, \lambda_3=2\)

怎么求矩阵方程?

求解矩阵方程,很像解一个一元一次方程,第一步就要”合并同类项”,将未知矩阵放在一起,然后利用逆矩阵来求解。

求解矩阵方程,很像解一个一元一次方程,第一步就要”合并同类项”,将未知矩阵放在一起,然后利用逆矩阵来求解。我们来看例子。

例 1:解矩阵方程\(AB=A+2B\),其中
\[A=\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}.\]

我们看到,两边都有\(B\),那第一步就是将要求的\(B\)放在一起。为此,我们将右边的\(2B\)移到左边,然后求\(A-2E\)的逆矩阵就可以得到\(B\)了。我们来看完整的过程。

解: 将方程右边的2B移到左边,方程变成了
\[AB-2B=A \rightarrow (A-2E)B=A.\]
所以,只要\(A-2E\)可逆,方程的解就是
\[B=(A-2E)^{-1}A.\]

现在我们来求\(A-2E\)的逆矩阵。首先,我们要证明其可逆。
\[|A-2E|=\begin{vmatrix}
-2&3&3\\
1&-1&0\\
-1&2&1
\end{vmatrix}=
\begin{vmatrix}
1&-3&0\\
1&-1&0\\
-1&2&1
\end{vmatrix}=2\ne0\]
所以\(A-2E\)可逆。现在我们来求它的逆。

我们教材上讲了两种求逆矩阵的方法,一种是伴随矩阵的方法,另一种是初等变换法。不要傻傻地去用伴随矩阵来求逆矩阵,费力又不讨好。虽然那是最开始讲的一种方法。

求逆矩阵最简便的方法是用初等变换法。现在我们就用它来求\(A-2E\)的逆矩阵。
\[\begin{align}(A-2E,E)&=\begin{pmatrix}
-2&3&3&\vdots& 1&0&0\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{r1 + r3 \times -3}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{\stackrel{r3+r1}{\scriptsize{r2-r1}}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&2&0&\vdots& -1&1&3\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{r2\times \frac{1}{2}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{\stackrel{r1+r2\times 3}{\scriptsize{r3+r2}}}{\sim}
\begin{pmatrix}
1&0&0&\vdots& -\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&0&1&\vdots &\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\end{align}\]

所以
\[(A-2E)^{-1}=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}\]

将它乘在\(A\)的左边,就得到了\(B\):
\[\begin{align}B=(A-2E)^{-1}A&=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}\\
&=\begin{pmatrix}
0&3&3\\
-1&2&3\\
1&1&0
\end{pmatrix}
\end{align}\]

初等变换技巧总结

初等变换的技巧并不多,总结起来,就这么三条:逐列进行;找最简单的数字;耐心

总有同学问,初等变换有什么技巧吗?其实,初等变换已经是线性代数里最简单有效的技巧了,当然,它本身还是有一点点技巧的,应用这些技巧,可以让你的初等变换变得容易那么一点点。

初等变换的技巧并不多,总结起来,就这么三条:

  1. 逐列进行。如果是要化成三角形,第一步,将第一列除第一个元素外,全部化成0;接着,将第二列的第二个元素下方的全部化成 0 ;依此下去,直到最后一列。如果是化成行阶梯形,也是先从第一列开始,将第一个元素的下方全部化成 0 ;然后第二列,第三列等等。 如果是要化成行最简,那么化成阶梯形后,再从最后一个阶梯开始,将每个阶梯的第一个非 0 元的上方化成,依次往前进行。
  2. 找最简单的数字。每次化简前,将最简单的数字所在的行交换到基础行。所谓基础行(这是我给的定义,呵呵),对于三角形来说,就是主对角线元素所在的行,例如,现在要化简第三列,那么第三行就是基础行,因为我们要将第三行第三列元素的下方都化成 0 。如果是要化成阶梯形,那么基础行就是已经化完了的行的下一行。
  3. 耐心。不要着急,因为初等变换要做很多数字的四则运算,很容易出错,也很容易让人厌倦,所以这时候耐心很重要。耐心才不容易出错。

现在我们来看一个例子,说明一下怎么用这两个原则,逐列进行与找最简单的数字。

例 1:将矩阵化成行最简矩阵
\[\begin{pmatrix}
2&3&1&-3&-7\\
1&2&0&-2&-4\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\]

解:我们来看,这个矩阵怎么运用前面所说的两个法则。逐列进行,那么就是从第一列开始,将第一个元素的下方全部变成 0 。然后再第二列,第三列等等。来看第一列,第一列里最简单的数字是 1 ,所以将 1 所在的行交换到第一行(基础行),我们得到
\[\begin{pmatrix}
2&3&1&-3&-7\\
1&2&0&-2&-4\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
2&3&1&-3&-7\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\]

然后,将下方的数字全部变成 0 ,那么将第一行乘以 -2 加到第二行,乘以 -3 加到第三行,乘以 -2 加到第四行,得到
\[
\begin{pmatrix}
1&2&0&-2&-4\\
2&3&1&-3&-7\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&-8&8&9&12\\
0&-7&7&8&11
\end{pmatrix}
\]

现在第一列化完了,该化第二列了。我们看到,第二列里,最简单的是 -1,它就在第二行里,就不用交换了。现在将第二行乘以 -8 加到第三行,乘以 -7 加到第四行,得到

\[\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&-8&8&9&12\\
0&-7&7&8&11
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&1&4
\end{pmatrix}
\]

现在该第三列了。但是因为第三列里,第三个元素之后都是 0 ,所以从阶梯形的定义,我们不需要对它进行运算。阶梯形里,第三个阶梯的第一个非 0 元在第四列,所以下一个是第四列,第四列里,第三个元素是 1 ,所以也不用交换行了,将第三行乘以 -1 加到第四行,就得到了
\[\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&1&4
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

现在已经是行阶梯形了,如果要化成行最简,那么每一个阶梯的第一个非 0 元的上方也应该化成 0 。这个时候,就是从最后一个阶梯开始。我们看,最后一个阶梯的第一个非 0 元在第四列,第三行。所以,将第三行乘以 -1 加到第二行,乘以 2 加到第一行,我们得到了
\[\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&0&4\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

同理,将第二行乘以 2 加到第一行,得到了
\[\begin{pmatrix}
1&2&0&0&4\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\sim
\begin{pmatrix}
1&0&2&0&-2\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

最后,将每一个阶梯的第一个非 0 元化成 1 。为此,只需要将第二行乘以 -1 ,我们的工作就完成了。
\[\begin{pmatrix}
1&0&2&0&-2\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\sim\begin{pmatrix}
1&0&2&0&-2\\
0&1&-1&0&3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]