Posted on

线性代数必会技巧细说

公共课的线性代数,它的所有的计算基本上基于两个技巧:初等变换,行列式的计算。当然,这里不包括数学系的线性代数或者高等代数课程,数学系的线性代数或者高等代数,不以计算为主。

公共课的线性代数,计算基本上离不开这两个技巧。甚至,可以将行列式的计算也归入到初等变换中来,这样,线性代数的计算技巧就只有一个:初等变换。掌握了这个技巧,那么线性代数的计算将不是一个问题。我们将这个题目细细地述说一下。

一、解线性方程组及判定方程组有解无解:只需要将系数矩阵(齐次线性方程组)或者增广矩阵(非齐次线性方程组)作初等变换,将它们化成行最简矩阵,则可以直接写出方程组的解(或者判定方程组有解无解)。例如,对线性方程组 \(A\vec{x}=\vec{b}\),其中
\[A=
\begin{pmatrix}
1& 1& 2& 3\\
2& 0& 0& 2\\
3 &2& 4& 7
\end{pmatrix},\quad
\vec{b}=
\begin{pmatrix}
1\\
4\\
4
\end{pmatrix}
\]

的增广矩阵作初等变换,化成行最简矩阵,

\[
(A,\vec{b})=
\begin{pmatrix}
1& 1& 2& 3 &\vdots& 1\\
2& 0& 0& 2&\vdots& 4\\
3 &2& 4& 7 &\vdots& 4
\end{pmatrix}
\sim
\begin{pmatrix}
1& 0& 0&1 &\vdots&2\\
0& 1& 2& 2&\vdots& -1\\
0 &0& 0& 0&\vdots& 0
\end{pmatrix}
\]

则方程组的解为

\[
\vec{\xi}=c_1
\begin{pmatrix}
0\\
-2\\
1\\
0
\end{pmatrix}+c_2
\begin{pmatrix}
-1\\
-2\\
0\\
1
\end{pmatrix}+
\begin{pmatrix}
2\\
-1\\
0\\
0
\end{pmatrix}
\]

这一部分,可以参考文章如何快速地写出方程组的解?

二、求行列式。求数字行列式的基本方法是降阶法,就是先用初等变换,将行列式的一行或者一列化成只有一个不为 \(0\),然后按这一行或者这一列展开,行列的阶就降了一阶,依次进行,最后变成二阶行列式,就可以利用二阶行列式的公式计算了。例如

\begin{align*}|A|&=\begin{vmatrix}1&1&-1&3\\ -1&-1&2&1\\ 2&5&2&4\\ 1&2&3&2\end{vmatrix}=\begin{vmatrix}1&1&-1&3\\ 0&0&1&4\\0&3&4&-2\\0&1&4&-1\end{vmatrix}\\&=\begin{vmatrix} 0&1&4\\3&4&-2\\1&4&-1\end{vmatrix}=\begin{vmatrix} 0&1&4\\0&-8&1\\1&4&-1\end{vmatrix}=\begin{vmatrix} 1&4\\-8&1\end{vmatrix}=33\end{align*}

就是先将第一列化成只有一个元素不为 \(0\),然后再将行列式按第一列展开,从四阶变成三阶;然后再做初等变换,将新的行列式的第一列化成只一个元素不为 \(0\),再按照第一列展开,变成二阶行列式,最后利用二阶行列式的公式得到了行列式的值。

这一部分,可以参考课程行列式的性质及其计算

三、求逆矩阵。求逆矩阵的方法是将方阵与单位矩阵横排成一个新的矩阵,再对这个矩阵作初等变换,当矩阵的左边,就是原方阵,变成单位矩阵的时候,右边的矩阵,就是单位矩阵就变成了原方阵的逆矩阵了。例如,求 \(A=\begin{pmatrix}0&1&2\\ 1&0&3\\ 4&-3&8\end{pmatrix}\) 的逆矩阵。

\begin{align*}(A,I)&=\begin{pmatrix}0&1&2&\vdots&1&0&0\\ 1&0&3&\vdots&0&1&0\\ 4&-3&8&\vdots&0&0&1\end{pmatrix}\sim\begin{pmatrix}1&0&3&\vdots&0&1&0\\0&1&2&\vdots&1&0&0\\ 4&-3&8&\vdots&0&0&1\end{pmatrix} \\ &\sim \begin{pmatrix}1&0&3&\vdots&0&1&0\\0&1&2&\vdots&1&0&0\\ 0&-3&-4&\vdots&0&-4&1\end{pmatrix}\sim \begin{pmatrix}1&0&3&\vdots&0&1&0\\0&1&2&\vdots&1&0&0\\ 0&0&1&\vdots&\frac{3}{2}&-2&\frac{1}{2}\end{pmatrix}\\ &\sim \begin{pmatrix}1&0&0&\vdots&-\frac{9}{2}&7&-\frac{3}{2}\\0&1&0&\vdots&-2&4&-1\\ 0&0&1&\vdots&\frac{3}{2}&-2&\frac{1}{2}\end{pmatrix}\end{align*}

所以 \(A^{-1}=\begin{pmatrix}-\frac{9}{2}&7&-\frac{3}{2}\\-2&4&-1\\ \frac{3}{2}&-2&\frac{1}{2}\end{pmatrix}\)

这一部分,可以参考文章如何求矩阵的逆矩阵?

四、判断向量组线性相关还是线性无关。具体做法是,将(列)向量组横排成一个矩阵,然后将这个矩阵作初等变换,如果矩阵的秩(就是行阶梯矩阵的非零行的行数)小于向量的个数,就是线性相关;如果等于向量的个数,就是线性无关。例如,\(\vec{a}_1=\begin{pmatrix}1\\-1\\0\end{pmatrix}, \vec{a}_2=\begin{pmatrix}1\\2\\0\end{pmatrix}, \vec{a}_3=\begin{pmatrix}1\\0\\3\end{pmatrix}\), 问 \(\vec{a}_1,\vec{a}_2,\vec{a}_3\) 是线性相关还是线性无关?

解法是,

\begin{align*}A&=(\vec{a}_1,\vec{a}_2,\vec{a}_3)=\begin{pmatrix}1&1&1\\ -1&2&0\\ 0&0&3\end{pmatrix}\sim \begin{pmatrix}1&1&1\\ 0&3&1\\ 0&0&3\end{pmatrix}\end{align*}

\(R(A)=3\),所以向量组线性无关。

五、求向量组的极大无关组,以及将其它向量用极大无关组线性表示。做法是,将(列)向量组横排成一个矩阵,将这个矩阵做初等变换,化成行最简矩阵,行最简矩阵的每一个非零行的第一个非零元所在的列,对应原矩阵的列向量,就是极大无关组的向量。行最简矩阵的各列之间的关系,就是原矩阵各向量之间的关系。例如,求向量组\[\vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix}, \vec{a}_3=\begin{pmatrix}9\\6\\-6\\9\end{pmatrix},\vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix},\vec{a}_5=\begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix}\] 的极大无关组,并且将其它向量用极大无关组线性表示。

\[( \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 , \vec{a}_5 )=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix}\sim \begin{pmatrix} 1&0&3&0&0\\ 0&1&-3&0&-7\\ 0&0&0&1&-2\\ 0&0&0&0&0 \end{pmatrix} \]

所以原向量组的一个极大无关组为

\[ \vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

而其它两个向量可以用极大无关组表示

\[\vec{a}_3=3\vec{a}_1-3\vec{a}_2,\quad \vec{a}_5=-7\vec{a}_2-2\vec{a}_4 \]

这一部分的内容,可以参考文章如何求一个向量组的极大无关组,以及如何用极大无关组线性表示其它向量?

六、特征值、特征向量、矩阵的对角化。求特征值本质就是求行列式 \(|A-\lambda I|\),求特征向量就是解线性方程组 \((A-\lambda I)\vec{x}=0\),矩阵对角化就是将特征向量排成一个矩阵,就是前面几个部分的综合应用。这部分可以参考 线性代数复习:特征值、特征向量与矩阵对角化

七、行列式的计算:具体的数字行列式的计算,是利用初等变换得到。但也有一些计算方法,例如递推法,拆分法,是利用行列式的性质来进行计算,这些计算方法可以了解,不需要花大力气去掌握。实际上,行列的计算方法还有很多很多种,只是行列式在现代的线性代数里,没有一百多年前那么重要了,所以也没有必要花费太多的时间去研究。

八、正交化和投影。这是另一个不需要初等变换的地方,但需要掌握。这是内积空间的主要计算部分。

所以总的来说,如果初等变换不掌握,挂科、重修基本上是板上订钉的事儿了。当然如果掌握了上面所说的几个部分,线性代数应该就不太难了,不要说这门课有多精通,考试过关应该不成问题的。

Posted on

如何用很少的几个习题复习好线性代数?

线性代数的知识点很分散,复习很不容易抓住要点。我们现在来看看,如何用最少的几个习题将这门课的重点都复习到。

我们可以这样选题:

  • 解一个非齐次的线性方程组;
  • 找一个带一、两个参数的线性方程组,判断它什么时候无解、有唯一解及有无穷个解;
  • 将一个方阵对角化;
  • 求一个向量组的极大无关组,并将其它向量用极大无关组表示;
  • 求一个四阶或者五阶的行列式;
  • 求一个方阵的逆矩阵;
  • 判断一个向量组是否线性无关;
  • 用正交变换将一个实对称矩阵对角化;
  • 求一个 \(n\) 阶行列式

如果这几个题你都可以自如地应付,那么线性代数这门课程你基本上不用担心了。因为这些题基本上涵盖了线性代数这门课程的主要内容。我们可以来分析一下。

第一个,解线性方程组,它基本上用到了线性方程组解的结构。从解线性方程组,你可以知道齐次线性方程组的基础解系怎么求,以及非齐次方程组与齐次方程组的解之间的关系。

第二个,判断线性方程组是否有解,是唯一解还是无穷多个解。这里涉及的内容有线性方程组解的理论,矩阵的秩,秩与解的关系。

第三个,矩阵对角化。矩阵对角化的步骤是:求特征值,求特征向量,将特征向量排成一个矩阵。这里就复习了特征值、特征向量以及相似矩阵的内容。

第四个,极大无关组及用极大无关组表示其它向量。这里复习了向量的线性表示,线性相关及线性无关的概念。重点是怎么找极大无关组,它也是矩阵的列空间的基。

前面这四个,考试的时候大多是以大题的形式出现,所以要优先复习而且一定掌握。

第五个,求行列式,一般都是用降阶法,它用到了行列式的性质和行列式展开。

第六个,求方阵的逆矩阵(初等变换法)。矩阵内容里面很大一部分内容都是为求逆矩阵作准备。为了得到用实现用初等变换求逆矩阵,引入了初等矩阵,然后将初等矩阵与初等变换联系起来,目的就是为了用初等变换求逆矩阵。

第七个,判断一个向量组是否线性相关。相关的内容是线性相关与线性无关的概念,以及线性相关性与齐次方程的解之间的关系。还有一个就是矩阵的秩。只要矩阵的秩小于向量的个数,就是线性相关的。

第八个,实对称矩阵的对角化。用正交变换化实对称矩阵为对角阵,不光是复习特征值、特征向量,还复习了向量组的正交性以及施密特正交化方法。

最后一个, \(n\) 阶行列式的计算,基本上是行列的按行或列展开加上递推式,偶而也可以直接利用初等变换求出。

你可以看一下,线性代数的内容差不多也就这些了。

Posted on

怎么找矩阵的列空间与零空间?

矩阵的列空间与零空间,听起来很难的样子,其实求它们并不算很难的一件事。在做完初等行变换,把矩阵变成行阶梯形后,列空间 \(\text{Col} A\)的基就很容易得到了,而求零空间 \(\text{Null}A\),其实就是求齐次方程的解空间。我们来具体讲一下怎么求这两个空间。

因为向量空间完全可以由其基表示,所以只要求出它的基就可以。现在我们讲一讲怎么求列空间的基。只需要两步就可以。
第一步:将矩阵化成行阶梯形;
第二步:找出每一个非零行,第一个非零元所在的列,对应的原矩阵里的列,就是列空间的基。

我们来看一个例子:设\(A\) 为如下的矩阵
\[
\begin{pmatrix}
1&4&8&-3&-7\\
-1&2&7&3&4\\
-2&2&9&5&5\\
3&6&9&-5&-2
\end{pmatrix}\]

通过初等行变换,它可以变成

\[
\begin{pmatrix}
1&4&8&0&5\\
0&2&5&0&-1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\]

现在已经变成了行阶梯形矩阵了。我们只需要找到每个非零行的首个非零元就知道列空间的基了。第一、二、三行都是非零行,它们的首个非零元在第一、二、四列,所以,列空间的基是原矩阵里的第一、二、四列,也就是说,\(Col A\) 的基由下列三个向量组成:

\[
\begin{pmatrix}
1\\
-1\\
-2\\
3
\end{pmatrix},
\begin{pmatrix}
4\\
2\\
2\\
6\end{pmatrix},
\begin{pmatrix}
-3\\
3\\
5\\
-5
\end{pmatrix}
\]

或者说 \[{\rm Col} A= {\rm span}\left(\begin{pmatrix}
1\\
-1\\
-2\\
3
\end{pmatrix},
\begin{pmatrix}
4\\
2\\
2\\
6\end{pmatrix},
\begin{pmatrix}
-3\\
3\\
5\\
-5
\end{pmatrix}\right)\]

现在我们转到怎么找零空间。由零空间的定义,\(Null A=\{\vec{x}|A\vec{x}=0\}\),所以,找零空间就是解方程组 \(A\vec{x}=0\}\) 。我们仍然以上面的 \(A\) 为例。我们先将它化成行最简形(RREF)
\[
\begin{pmatrix}
1&4&8&0&5\\
0&2&5&0&-1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\sim
\begin{pmatrix}
1&0&-2&0&-3\\
0&1&\frac{5}{2}&0&-\frac{1}{2}\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

它的解是
\[\vec{x}=
C_1\begin{pmatrix}
2\\
-\frac{5}{2}\\
1\\
0\\
0
\end{pmatrix}+C_2
\begin{pmatrix}
3\\
\frac{1}{2}\\
0\\
-4\\
1
\end{pmatrix}
\]

所以零空间是
\[
Null A={\rm span}\left(\begin{pmatrix}
2\\
-\frac{5}{2}\\
1\\
0\\
0
\end{pmatrix},
\begin{pmatrix}
3\\
\frac{1}{2}\\
0\\
-4\\
1
\end{pmatrix}\right)
\]

Posted on

如何求矩阵的逆矩阵?

求逆矩阵最有效的方法是初等变换法(虽然还有别的方法)。如果要求方阵 \(A\) 的逆矩阵,标准的做法是:

  • 将矩阵 \(A\) 与单位矩阵 \(I\) 排成一个新的矩阵 \((A \quad I)\)
  • 将此新矩阵 \(( A \quad I )\) 做初等行变换,将它化成 \(( I \quad B )\) 的形式
  • \(B=A^{-1}\)

若 \(A\) 是一个二阶方阵

\[A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}\]

则它的逆矩阵可以直接使用公式

\[A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}d&-b\\ -c&a\end{pmatrix}\]

来计算。我们来看几个例子。

例1:求二阶矩阵

\[A=\begin{pmatrix}8&6\\ 5&4\end{pmatrix}\]

的逆矩阵。

解:因为矩阵是二阶矩阵,我们可以直接利用二阶逆矩阵的公式来求解。

\[\begin{align*}A^{-1}&=\frac{1}{8\cdot4-6\cdot5}\begin{pmatrix}4&-6\\ -5&8\end{pmatrix} \\& =\frac{1}{2}\begin{pmatrix} 4&-6\\ -5&8 \end{pmatrix}= \begin{pmatrix} 2&-3\\ -\frac{5}{2}&4 \end{pmatrix}\end{align*}\]

例2:求矩阵

\[A= \begin{pmatrix} 1&0&-2\\ -3&1&4\\ 2&-3&4\end{pmatrix} \]

的逆矩阵。

解:这是一个三阶的矩阵,最简便有效的方法是初等变换法。(你可以试试用伴随矩阵的方法来求,计算量比初等变换法相差多大)我们将矩阵与单位矩阵排在一起,然后做初等变换

\[\begin{align*}(A\quad I)&=\begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ -3&1&4 &\vdots& 0&1&0\\ 2&-3&4 &\vdots& 0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&-3&8 &\vdots& -2&0&1\end{pmatrix}\\ &\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\\&\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&1 &\vdots& \frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \end{align*}\]

所以我们得到

\[A^{-1}= \begin{pmatrix} 8&3&1\\ 10&4&1\\\frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \]

我们看到的这个矩阵是三阶的,利用初等变换计算逆矩阵已经比伴随矩阵法少了很多的计算量了。实际上,矩阵的阶数越高,节约下来的计算量越多。利用伴随矩阵计算逆矩阵,三阶矩阵的话,需要计算一个三阶行列式,九个二阶行列式。四阶的话,需要计算一个四阶行列式,十六个三阶行列式,手算的话,已经让人难以接受了。

我们来看一个四阶矩阵的逆矩阵。

例3:求矩阵

\[A=\begin{pmatrix}1&2&3&4\\ 2&3&1&2\\ 1&1&1&-1\\ 1&0&-2&-6\end{pmatrix}\]

的逆矩阵。

解:我们将下述矩阵做初等变换

\[ \begin{align*} (A\quad I)&= \begin{pmatrix}1&2&3&4 &\vdots &1&0&0&0\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&0&-2&-6 &\vdots &0&0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&2&3&4 &\vdots &1&0&0&0 \end{pmatrix} \\& \sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&3&5&14 &\vdots &0&1&0&-2\\ 0&1&3&5 &\vdots &0&0&1&-1\\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&3&5&14 &\vdots &0&1&0&-2 \\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&0 &\vdots &24&-6&-30&19\\ 0&1&3&0 &\vdots &-20&5&26&-16 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix} \\ &\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&1&0 &\vdots &-1&0&2&-1 \\ 0&0&0&1 &\vdots &4&-1&-5&3 \end{pmatrix} \end{align*}\]

所以,我们得到

\[A^{-1}= \begin{pmatrix} 22&-6&-26&17\\ -17&5&20&-13 \\ -1&0&2&-1 \\ 4&-1&-5&3 \end{pmatrix} \]

Posted on

如何求一个向量组的极大无关组,以及如何用极大无关组线性表示其它向量?

我们求向量的极大无关组,并且把其它向量用极大无关组表示的方法和步骤是:

  • 首先将所有列向量排成一个矩阵(如果是行向量, 先转置成列向量);
  • 将所得到的矩阵作初等行变换,化成行最简矩阵;
  • 每个非零行的第一个非零元(\(1\))所在的列,所对应原矩阵的列向量,就是极大无关组的向量,所有这些向量组成了极大无关组;
  • 行最简矩阵的列向量之间的关系,与原矩阵的列向量组之间的关系是一样的。也就是说,极大无关组与其它向量的关系,与行最简矩阵里列向量的关系一样。

这里我们说明一下:极大无关组可以有不同的选择,但是我们这里的选择方式比较直观,不容易出错,而且向量之间的关系一目了然,最容易计算,易于操作。

现在我们举例说明如何使用这种方法。

例:设有向量组

\[\vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_3=\begin{pmatrix}9\\6\\-6\\9\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix},\quad \vec{a}_5=\begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix}\]

求该向量组的一个极大无关组,并把其它向量用极大无关组表示。

解:我们先把向量组排成一个矩阵

\[A=( \vec{a}_1 \quad \vec{a}_2 \quad \vec{a}_3 \quad \vec{a}_4 \quad \vec{a}_5 )=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix}\]

对此矩阵作初等变换,将矩阵化成行最简矩阵 (省去中间步骤) ,我们有

\[\begin{align*}A=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix} \sim \begin{pmatrix} 1&0&3&0&0\\ 0&1&-3&0&-7\\ 0&0&0&1&-2\\ 0&0&0&0&0 \end{pmatrix} \end{align*}\]

我们看到,非零行是一、二、三行,第一行第一个非零元在第一列,它对应 \(\vec{a}_1\),第二行的第一个非零元在第二列,它对应 (\vec{a}_2\),第三行的第一个非零元在第四列,它对应 (\vec{a}_4\),所以原向量组的一个极大无关组为

\[ \vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

现在我们将 \( \vec{a}_3 , \vec{a}_5\) 用极大无关组表示。因为在行最简矩阵里,第三列与第一、二、四列的关系为

\[\begin{pmatrix}3\\-3\\0\\0\end{pmatrix}=3\begin{pmatrix}1\\0\\0\\0\end{pmatrix}-3 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} \]

所以

\[\vec{a}_3=3\vec{a}_1-3\vec{a}_2,\quad \text{即} \begin{pmatrix}9\\6\\-6\\9\end{pmatrix} =3 \begin{pmatrix}1\\1\\-2\\4\end{pmatrix} -3 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix} \]

再从行最简矩阵第五列与第一、二、四列的关系

\[\begin{pmatrix}14\\-7\\-2\\0\end{pmatrix}=-7 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} -2 \begin{pmatrix}0\\0\\1\\0\end{pmatrix} \]

知道

\[\vec{a}_5=-7\vec{a}_2-2\vec{a}_4,\quad \text{即} \begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix} =-7 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix}-2 \begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

可以验算一下,这两个表示式是正确的。

Posted on

如何用配方法将不含平方项的二次型化成标准形?

一般情况下,我们使用配方法化二次型为标准形的时候,用的是完全平方公式 \((a+b)^2=a^2+2ab+b^2\),如果多项式里有 \(a^2+2ab\),那么我们可以通过加一项 \(b^2\) 再减一项 \(b^2\) 的方法达到将这两项化成只剩下平方项的目的。也就是说

\[a^2+2ab=a^2+2ab+b^2-b^2=( a^2+2ab+b^2 )-b^2=(a+b)^2-b^2\]

这样,就只剩下两个平方项了。只要令 \(x=(a+b),y=b\),上式就可以变成\(x^2-y^2\),就是一个标准的二次型。

但是有些二次型,没有平方项,只有混合项,那么这个方法就不可以用了。那么怎么办呢?这个时候我们可以利用平方差公式,\((a+b)(a-b)=a^2-b^2\)将混合项化成标准形。例如,只有一项 \(x_1x_2\),那么令 \(x_1=y_1+y_2, x_2=y_1-y_2\),那么 \(x_1x_2=(y_1+y_2)(y_1-y_2)=y_1^2-y_2^2\)。这就是将不含平方项的二次型化成标准形的方法。

我们来看一个例子:用配方法将二次型

\[f(x_1,x_2,x_3)=x_1x_2+x_1x_3+x_2x_3\]化成标准形。

解:令 \(x_1=y_1+y_2, x_2=x_1-y_2, x_3=y_3\),则

\[ \begin{align*}f=x_1x_2+x_1x_3+x_2x_3 &=(y_1+y_2)(y_1-y_2)+(y_1+y_2)y_3+(y_1-y_2)y_3\\ &=y_1^2-y_2^2+2y_1y_3\end{align*}\]

再对 \(y_1,y_3\) 进行配方,因为 \(y_1^2+2y_1y_3=(y_1+y^3)^2-y_3^2\),所以只要令 \(z_1=y_1+y_3, z_2=y_2, z_3=y_3\),则二次型变成\[f=z_1^2-z_2^2-z_3^2\]

Posted on

线性代数怎么学

  1. 线性代数的基本计算技巧是初等(行)变换。线性代数里需要用到初等变换的地方太多了,基本上贯穿了整个课程。例如解线性方程组,求逆矩阵,求特征向量,判定向量组的线性相关性等等。 初等变换的基本技术有两点:其一、按列进行,先将第一列除第一个数字外,全部化成零。然后第二列,第三列等等进行。其二,每次找个最简单的数字所在的行做为基本行,进行变换。当然最简单的数学莫过于 \(1\) 了。

    这里有详细的视频教程讲解如何进行有效的初等变换:矩阵初等变换的方法与技巧

  2. 线性代数的基本理论是线性方程组的理论。它是其它理论的基础。例如可以用它来判定向量组的线性相关性,可以用来求特征向量,可以用来判定矩阵是否可逆,可以确定一个向量是不是其它向量的线性组合等等。 线性方程组的基本理论有两个方面,解的结构和求解方法。求解方法就是高斯消元法,也就是初等变换的方法。 而解的结构,又有两个方面。齐次方程 \(A{\vec x}=0\) 和非齐次方程 \(A{\vec x}={\vec b}\)。
    • 齐次方程:
      • 方程组有非零解的充分必要条件是 \(\text {Rank} (A) < n\) 。其中 \(\text {Rank} (A)\) 可以简单地认为是行变换后,阶梯形(REF)矩阵中非零行的行数。\(n\) 是方程中未知元的个数。
      • 齐次方程组只有零解的条件是 \(\text {Rank} (A) = n\)
    • 非齐次方程:
      • 方程组无解的条件是 \(\text {Rank} (A) < \text {Rank} (A,{\vec b})\)
      • 方程组有唯一解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) = n\)
      • 方程组有无穷多个解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) < n\)
      • 方程组的通解为 \({\vec x}={\vec x_h}+{\vec \eta}\),其中 \(\vec x_h\) 是 \(A{\vec x}=0\) 的通解,\(\vec \eta\) 是非齐次方程 \(A{\vec x}={\vec b}\) 的一个(特)解。
    • 这里我们总结了线性方程组的求法:解线性方程组
  3. 第二个计算技巧是行列式的计算。在计算特征值的时候,一定会用到行列式的计算。另外,还可以用行列来判定矩阵是否可逆,向量组是否相关,还可以判定方程组有解、无解或者有无穷多个解等等。
  4. 线性方程组应用比较多的方面是特征值与特征向量,这个一定要会。在矩阵的对角化,解常微分方程组,随机过程等等方面都有应用。这部分的内容的计算,都是应用行列式和方程组的计算。
Posted on

怎么求矩阵的特征值

方阵的特征值的计算历来是线性代数课程里较难掌握的一部分。它不仅涉及到带字母的行列式的计算,还包含了多项的求根的过程。现在我们来看看矩阵特征值的求法。

例 :求矩阵
\[A=\begin{pmatrix}
1&-2&4\\
2&3&1\\
1&1&1
\end{pmatrix}\]
的特征值.

求方阵\(A\)的特征值, 就是求多项式 \(|A-\lambda I|\) 的根. 它的基本步骤是这样的:

  1. 求出行列式 \(|A-\lambda I|\) , 它是一个关于 \(\lambda\) 的多项式 (就是特征多项式);
  2. 令多项式 \(|A-\lambda I |\) = 0, 求出 \(\lambda\) 的值 (就是特征值, 或者特征根)

现在我们来看这个题的完整的解法.

解:\(A\) 的特征多项式为
\[|A-\lambda I|=\begin{vmatrix}
1-\lambda&-2&4\\
2&3-\lambda&1\\
1&1&1-\lambda
\end{vmatrix}\]

先交换1, 3 两行,再将第一行乘以 \(-2\) 加到第二行, 乘以 \(\lambda-1\)加到第三行, 再对第一列展开, 就得到
\[\begin{align}|A-\lambda I|&=\begin{vmatrix}
1-\lambda&-2&4\\
2&3-\lambda&1\\
1&1&1-\lambda
\end{vmatrix}\\
&=-\begin{vmatrix}
1&1&1-\lambda\\
0&1-\lambda&-1+2\lambda\\
0&-3+\lambda&4-(1-\lambda)^2
\end{vmatrix}\\
&=-\begin{vmatrix}
1-\lambda&-1+2\lambda\\
-3+\lambda&4-(1-\lambda)^2
\end{vmatrix}
\end{align}\]

把第一列提出因子\(-1\), 并将第2 行第2 列的元素展开,可得
\[|A-\lambda I|=
\begin{vmatrix}
\lambda-1&-1+2\lambda\\
-\lambda+3&(1+\lambda)(3-\lambda)
\end{vmatrix}=
(3-\lambda)\begin{vmatrix}
\lambda-1&-1+2\lambda\\
1&1+\lambda
\end{vmatrix}=(\lambda-3)(-\lambda)(\lambda-2).
\]

令\(|A-\lambda I|=0\), 就得到了方阵\(A\) 的特征值为 \(\lambda_1=3, \lambda_2=0, \lambda_3=2\)

Posted on

怎么求矩阵方程?

求解矩阵方程,很像解一个一元一次方程,第一步就要”合并同类项”,将未知矩阵放在一起,然后利用逆矩阵来求解。我们来看例子。

例 1:解矩阵方程\(AB=A+2B\),其中
\[A=\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}.\]

我们看到,两边都有\(B\),那第一步就是将要求的\(B\)放在一起。为此,我们将右边的\(2B\)移到左边,然后求\(A-2E\)的逆矩阵就可以得到\(B\)了。我们来看完整的过程。

解: 将方程右边的2B移到左边,方程变成了
\[AB-2B=A \rightarrow (A-2E)B=A.\]
所以,只要\(A-2E\)可逆,方程的解就是
\[B=(A-2E)^{-1}A.\]

现在我们来求\(A-2E\)的逆矩阵。首先,我们要证明其可逆。
\[|A-2E|=\begin{vmatrix}
-2&3&3\\
1&-1&0\\
-1&2&1
\end{vmatrix}=
\begin{vmatrix}
1&-3&0\\
1&-1&0\\
-1&2&1
\end{vmatrix}=2\ne0\]
所以\(A-2E\)可逆。现在我们来求它的逆。

我们教材上讲了两种求逆矩阵的方法,一种是伴随矩阵的方法,另一种是初等变换法。不要傻傻地去用伴随矩阵来求逆矩阵,费力又不讨好。虽然那是最开始讲的一种方法。

求逆矩阵最简便的方法是用初等变换法。现在我们就用它来求\(A-2E\)的逆矩阵。
\[\begin{align}(A-2E,E)&=\begin{pmatrix}
-2&3&3&\vdots& 1&0&0\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{r1 + r3 \times -3}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{\stackrel{r3+r1}{\scriptsize{r2-r1}}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&2&0&\vdots& -1&1&3\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{r2\times \frac{1}{2}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{\stackrel{r1+r2\times 3}{\scriptsize{r3+r2}}}{\sim}
\begin{pmatrix}
1&0&0&\vdots& -\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&0&1&\vdots &\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\end{align}\]

所以
\[(A-2E)^{-1}=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}\]

将它乘在\(A\)的左边,就得到了\(B\):
\[\begin{align}B=(A-2E)^{-1}A&=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}\\
&=\begin{pmatrix}
0&3&3\\
-1&2&3\\
1&1&0
\end{pmatrix}
\end{align}\]

Posted on

初等变换技巧总结

总有同学问,初等变换有什么技巧吗?其实,初等变换已经是线性代数里最简单有效的技巧了,当然,它本身还是有一点点技巧的,应用这些技巧,可以让你的初等变换变得容易那么一点点。

初等变换的技巧并不多,总结起来,就这么三条:

  1. 逐列进行。如果是要化成三角形,第一步,将第一列除第一个元素外,全部化成0;接着,将第二列的第二个元素下方的全部化成 0 ;依此下去,直到最后一列。如果是化成行阶梯形,也是先从第一列开始,将第一个元素的下方全部化成 0 ;然后第二列,第三列等等。 如果是要化成行最简,那么化成阶梯形后,再从最后一个阶梯开始,将每个阶梯的第一个非 0 元的上方化成,依次往前进行。
  2. 找最简单的数字。每次化简前,将最简单的数字所在的行交换到基础行。所谓基础行(这是我给的定义,呵呵),对于三角形来说,就是主对角线元素所在的行,例如,现在要化简第三列,那么第三行就是基础行,因为我们要将第三行第三列元素的下方都化成 0 。如果是要化成阶梯形,那么基础行就是已经化完了的行的下一行。
  3. 耐心。不要着急,因为初等变换要做很多数字的四则运算,很容易出错,也很容易让人厌倦,所以这时候耐心很重要。耐心才不容易出错。

现在我们来看一个例子,说明一下怎么用这两个原则,逐列进行与找最简单的数字。

例 1:将矩阵化成行最简矩阵
\[\begin{pmatrix}
2&3&1&-3&-7\\
1&2&0&-2&-4\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\]

解:我们来看,这个矩阵怎么运用前面所说的两个法则。逐列进行,那么就是从第一列开始,将第一个元素的下方全部变成 0 。然后再第二列,第三列等等。来看第一列,第一列里最简单的数字是 1 ,所以将 1 所在的行交换到第一行(基础行),我们得到
\[\begin{pmatrix}
2&3&1&-3&-7\\
1&2&0&-2&-4\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
2&3&1&-3&-7\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\]

然后,将下方的数字全部变成 0 ,那么将第一行乘以 -2 加到第二行,乘以 -3 加到第三行,乘以 -2 加到第四行,得到
\[
\begin{pmatrix}
1&2&0&-2&-4\\
2&3&1&-3&-7\\
3&-2&8&3&0\\
2&-3&7&4&3
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&-8&8&9&12\\
0&-7&7&8&11
\end{pmatrix}
\]

现在第一列化完了,该化第二列了。我们看到,第二列里,最简单的是 -1,它就在第二行里,就不用交换了。现在将第二行乘以 -8 加到第三行,乘以 -7 加到第四行,得到

\[\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&-8&8&9&12\\
0&-7&7&8&11
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&1&4
\end{pmatrix}
\]

现在该第三列了。但是因为第三列里,第三个元素之后都是 0 ,所以从阶梯形的定义,我们不需要对它进行运算。阶梯形里,第三个阶梯的第一个非 0 元在第四列,所以下一个是第四列,第四列里,第三个元素是 1 ,所以也不用交换行了,将第三行乘以 -1 加到第四行,就得到了
\[\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&1&4
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

现在已经是行阶梯形了,如果要化成行最简,那么每一个阶梯的第一个非 0 元的上方也应该化成 0 。这个时候,就是从最后一个阶梯开始。我们看,最后一个阶梯的第一个非 0 元在第四列,第三行。所以,将第三行乘以 -1 加到第二行,乘以 2 加到第一行,我们得到了
\[\begin{pmatrix}
1&2&0&-2&-4\\
0&-1&1&1&1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\sim
\begin{pmatrix}
1&2&0&0&4\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

同理,将第二行乘以 2 加到第一行,得到了
\[\begin{pmatrix}
1&2&0&0&4\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\sim
\begin{pmatrix}
1&0&2&0&-2\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

最后,将每一个阶梯的第一个非 0 元化成 1 。为此,只需要将第二行乘以 -1 ,我们的工作就完成了。
\[\begin{pmatrix}
1&0&2&0&-2\\
0&-1&1&0&-3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\sim\begin{pmatrix}
1&0&2&0&-2\\
0&1&-1&0&3\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]