如何用Stolz公式求数列的极限

这里叙述了 Stolz 定理,并且举例说明了如何应用 Stolz 定理来求数列的极限。

在高等数学这门课里,一般都不讲Stolz定理,但是因为这个定理应用广泛而且非常方便,我觉得有必要讲一讲这个定理。
这个定理的形式很像函数极限的洛必达法则。这个定理有两个等价的形式,我们只叙述我们方便应用的这个形式。
定理: 设有数列\(\{b_n\}_{n=1}^{\infty}\)严格单调增,\(\lim_{n \to \infty}b_n=\infty\),并且极限
\(\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}\)存在(可以为无穷大),
那么就有
\[\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}.\]

我们来看两个例子:
(1)求极限
\[\lim_{n\to\infty}\frac{a^n}{n}\quad (a>1)\]
(2)设\(\lim_{n\to \infty}a_n=A\),求极限
\[\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}\]

这两个例子,分母都是\(n\),很显然是单调增加而且极限为无穷大,符合定理的条件。
(1)由定理可知
\[ \lim_{n\to\infty}\frac{a^n}{n}=\lim_{n\to\infty}\frac{a^n-a^{n-1}}{n-(n-1)}=\lim_{n\to\infty}(a^n-a^{n-1})=\lim_{n\to\infty}(a^n(1-\frac{1}{a})=\infty\]

(2)设\(x_n=a_1+a_2+\cdots+a^n\),那么
\[\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=\lim_{n\to\infty}\frac{x_n}{n}=\lim_{n\to\infty}(x_n-x_{n-1})=\lim_{n\to\infty}a_n=A\]

极限求法大全

求极限的方法大全, 以及哪些类型的极限应用什么方法比较有效.

高等数学里, 求极限的技巧特别多, 这也正是因为极限的求法相对比较难, 所以发展出多种多样的求极限方法. 有很多方法只是针对特定类型的极限有效. 现在我们看看高等数学里都有哪些求极限的方法, 以及哪些类型的极限应用什么方法比较有效.

我们先来说一说求极限时的一般原则.

求极限的一般原则:

  1. 首先, 运用极限的运算法则(四则运算, 连续函数的极限, 复合函数的极限), 确定极限是不是未定式极限;
  2. 两种基本的未定式极限是 \(\displaystyle\frac{0}{0}\) 型和 \(\displaystyle\frac{\infty}{\infty}\) , 这两种情形一般可以用洛必达法则来求. 有一些特殊的情形, 我们接下来讲;
  3. 其它未定式极限(\(\displaystyle0\cdot\infty, \infty-\infty, 1^{\infty}, 0^0, \infty^0 \)),要先化成上面的两种基本情形来求,然后用洛必达法则或者其它方法来求。

各种类型的极限求法:

  1. 对未定式极限,\(\frac{0}{0}\) 型或者 \(\frac{\infty}{\infty}\),最有效也是最基本的方法是洛必达法则。也就是在求极限的时候,先分子分母分别求导,再求极限。例如
    \begin{align*}\lim_{x\to 0}\frac{\sin x-x}{x^3}&=\lim_{x\to0}\frac{\cos x-1}{3x^2}\\&=\lim_{x\to0}\frac{-\sin x}{6x}\\&=\lim_{x\to0}\frac{-\cos x}{6}\\&=-\frac{1}{6}\end{align*}
  2. \(\displaystyle\frac{0}{0}\) 型, \(x\to a\) ,且分子分母都是多项式,则分子分母可以约去无穷小因子 \(x-a\)。例如 \begin{align*}\lim_{x\to3}\frac{x^2-5x+6}{x^2-8x+15}&=\lim_{x\to3}\frac{(x-3)(x-2)}{(x-3)(x-5)}\\&=\lim_{x\to3}\frac{(x-2)}{(x-5)}\\&=-\frac{1}{2}.\end{align*}
  3. \(\displaystyle\frac{0}{0}\) 型, \(x\to a\) ,且分子或者分母有根式, 则先对根式有理化,然后用极限运算法则或者约去无穷小因子的方法来计算。例如
    \[\lim_{x\to 4}\frac{\sqrt{1+2x}-3}{\sqrt{x}-2}\]
    我们在分子分母都乘以 \(\sqrt{1+2x}+3\) ,则分子就有理化了,再在分子分母同乘以因式 \(\sqrt{x}+2\),则分母就有理化了,从而原极限变成
    \begin{align*}\lim_{x\to 4}&\frac{\sqrt{1+2x}-3}{\sqrt{x}-2}\cdot\frac{\sqrt{1+2x}+3}{\sqrt{1+2x}+3}\cdot\frac{\sqrt{x}+2}{\sqrt{x}+2}\\&=\lim_{x\to 4}\frac{2(x-4)(\sqrt{x}+2)}{(x-4)(\sqrt{1+2x}+3)}=\frac{4}{3}\end{align*}
  4. \(\displaystyle\frac{0}{0}\) 型, \(x\to 0\) ,分子或分母有三角函数,则利用三角函数恒等式或其它变换,化成两个重要极限的第一个,利用那个极限来求。例如
    \begin{align*}\lim_{x\to 0}\frac{\tan x-\sin x}{\sin^3x}&=\lim_{x\to 0}\frac{\sin x/\cos x – \sin x}{\sin^3x}\\&=\lim_{x\to 0}\frac{\sin x(1-\cos x)}{\cos x\sin^3x}\\&=\lim_{x\to 0}\frac{1-\cos x}{\sin^2 x} \cdot \frac{1}{\cos x}\end{align*}
    而 \(1-\cos x=2\sin^2\frac{x}{2}\),所以上述极限为
    \begin{align*}\lim_{x\to 0}\frac{\tan x-\sin x}{\sin^3x}&=\lim_{x\to 0}\frac{2\sin^2\frac{x}{2}}{\sin^2 x} \cdot \frac{1}{\cos x}\\&=\lim_{x\to 0}\frac{\sin^2\frac{x}{2}}{(\frac{x}{2})^2}\frac{(2\frac{x}{2})^2}{\sin^2 x} \cdot \frac{1}{\cos x}\\&=\frac{1}{2}\end{align*}
  5. \(\displaystyle\frac{\infty}{\infty}\) 型,\(x\to\infty\) (或者 \(n\to\infty\)),且分子分母都是 \(x\) (或者 \(n\))的多项式或者类似于多项式(根式里是多项式)时,分子分母同除以 \(x\) 的最高阶幂。例如
    \begin{align*}\lim_{x\to\infty}\frac{x^2-1}{2x^2-x-1}&=\lim_{x\to\infty}\frac{1-\frac{1}{x^2}}{2-\frac{1}{x}-\frac{1}{x^2}}=\frac{1}{2},\\ \lim_{x\to\infty}\frac{2x^2+5x-1}{x^3-7x}&=\lim_{x\to\infty}\frac{\frac{2}{x}+\frac{5}{x^2}-\frac{1}{x^3}}{1-\frac{7}{x^2}}=0\end{align*}
  6. \(\infty-\infty\) 型,如二者都是分式,则先通分,化成两种基本形式,再用洛必达法则或者其它方法求极限。例如
    \begin{align*}\lim_{x\to0}\frac{1}{\sin x}-\frac{1}{\tan x}&=\lim_{x\to0}\frac{\tan x-\sin x}{\sin x\tan x}\\&=\lim_{x\to0}\frac{\sin x(\frac{1}{\cos x}-1}{\sin x\tan x}\\ &=\lim_{x\to0}\frac{1-\cos x}{\cos x\tan x}\\&=\lim_{x\to0}\frac{1-\cos x}{\sin x}\\ &=\lim_{x\to0}\frac{2\sin^2\frac{x}{2}}{\sin x}\\ &=2\lim_{x\to0}\frac{\sin^2\frac{x}{2}}{(\frac{x}{2})^2}\cdot\frac{(\frac{x}{2})^2}{\sin x}=0\end{align*}
    最后一步利用了公式 \(\lim_{x\to 0}\frac{\sin x}{x}=1\)。
  7. \(\infty-\infty\) 型,如果其中一个含有根式,则先有理化,再用其它方法求极限。例如
    \begin{align*}\lim_{x\to\infty}(\sqrt{(x+a)(x+b)}-x)&=\lim_{x\to\infty}\frac{(\sqrt{(x+a)(x+b)}-x)(\sqrt{(x+a)(x+b)}+x)}{\sqrt{(x+a)(x+b)}+x}\\&=\lim_{x\to\infty}\frac{((x+a)(x+b)-x^2)}{\sqrt{(x+a)(x+b)}+x} \\&= \frac{a+b}{2}\end{align*}
    最后一步是由分子分母同除以 \(x\) 得到。
  8. \(\displaystyle1^{\infty}\) 型, 首先尝试能不能化成 \((1+\alpha)^{\frac{1}{\alpha}}\) 的复合式,然后利用已知极限 \(\lim_{n\to\infty}(1+\frac{1}{n})^{n}=e\),这里 \(\alpha\) 是一个无穷小量。例如
    \begin{align*}\lim_{x\to\infty}\left(\frac{x+a}{x-a}\right)^x&=\lim_{x\to\infty}\left(1+\frac{2a}{x-a}\right)^x\\&=\lim_{x\to\infty}\left[\left(1+\frac{2a}{x-a}\right)^{\frac{x-a}{2a}}\right]^{x\cdot\frac{2a}{x-a}}\\&=e^{2a}\end{align*}这是因为方括号里面的部分的极限是 \(e\),而方括号外面的指数的极限是 \(2a\)。
  9. \(\displaystyle 1^{\infty}\) 型,\(0^0\) 型, \(\infty^0\) 型,先取对数, 再取 \(e\) 底,化成基本的未定式极限 \(\frac{0}{0}, \frac{\infty}{\infty}\),然后用洛必达法则或者其它方式求极限。例如
    \[\lim_{x\to0}(x+e^x)^{\frac{1}{x}}=\lim_{x\to0} e^{\frac{1}{x}\ln(x+e^x)}=e^{\lim_{x\to0}\frac{1}{x}\ln(x+e^x)}=e^2\]
    最后一步是对指数部分应用洛必达法则。
  10. \(0\cdot\infty\) 型,将其中一个乘式变成分母,从而化成两种基本形式的未定式;再利用其它方法求积分。例如
    \[\lim_{x\to\infty}x\ln(1+\frac{1}{x})=\lim_{x\to\infty}\frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}=1\]
  11. 如果未定式极限里,函数比较复杂,不能用洛必达法则或者洛必达法则使用起来太麻烦的话,则考虑用泰勒展开来求极限。例如
    \[\lim_{x\to 0}\frac{e^x\sin x-x(1+x)}{x^3},\qquad \lim_{x\to\infty}(x-x^2\ln(1+\frac{1}{x}))\]
    前者将 \(e^x,\sin x\) 展开到三阶,后者将 \(\ln(1+\frac{1}{x})\) 展开到 \(1/x\) 的四阶。
  12. 如果可以通过一个明显的放缩,且放缩后两者的极限都相等的话,就使用夹挤原理来求极限。例如
    \[\lim_{n\to\infty}n\left(\frac{1}{n^2+\pi}+\frac{1}{n^2+2\pi}+\cdots+\frac{1}{n^2+n\pi}\right)\]
    显然有
    \begin{align*}n\frac{n}{n^2+n\pi}&\leq n\left(\frac{1}{n^2+\pi}+\frac{1}{n^2+2\pi}+\cdots+\frac{1}{n^2+n\pi}\right)\\&\qquad\qquad\leq n\frac{n}{n^2+\pi}\end{align*}
    不等号的左边和右边都有相同极限 \(1\)(只需要在分子分母除以 \(n^2\) 即可),所以由夹挤原理,原极限为 \(1\) 。
  13. 如果含有变上限积分,那么通常情况下是洛必达法则结合变上限积分的导数来求;
  14. 如果数列是用递推或者迭代形式给出, 即 \(x_{n+1}=f(x_n)\), 那么肯定是用递推法来求极限,这时候,要注意,一定要先证明极限存在(单调有界数列),然后两边取极限,可得一个代数式,从而可以求得极限;
  15. 如果是数列的每一项是无限多个项相加,且每一项可以写成 \(\displaystyle\frac{1}{n}f(\frac{\xi}{n})\) 的话,那么这个极限可以用定积分的定义来求。这里,\(\frac{\xi}{n}\) 取值范围就是定积分的积分上下限,而 \(f(x)\) 就是被积函数。例如
    \[\lim_{n\to\infty}\frac{1}{n}\sum_{\xi=1}^{n}\sqrt{1+\frac{\xi}{n}}\]
    这里,\(f(\frac{\xi}{n})=\sqrt{1+\frac{\xi}{n}}\) ,所以被积函数是 \(\sqrt{1+x}\),\(\frac{\xi}{n}\) 在和式里的取值范围是从 \(0\) 到 \(1\)。(\(0\) 这一项可以认为没写出来)。所以原极限等于定积分
    \[\int_0^1\sqrt{1+x}dx\]
  16. 分段函数在分段点处的极限一定要求左右极限,然后确定二者是否相等;
  17. 幂指函数 \(\displaystyle(f(x))^{g(x)}\)的极限,如果是未定式极限, 一定要先化成 \(\displaystyle e^{g(x)\ln(f(x))}\)形式,然后运用复合函数的极限法则,将极限符号移到指数上去,对指数部分用未定义极限的求法求极限。也就是说
    \[\lim_{x\to a}(f(x))^{g(x)}=e^{\lim_{x\to a}g(x)\ln(f(x))}\]

如何求递推形式的极限?

对递推形式的极限,通常难在怎么证明极限是存在的,而它的计算是比较容易的。我们能用的方法是“单调有界数列必有极限”。所以我们要证两件事,一个是序列是单调的,另一个是序列是有界的。

所谓递推式,就是形如\[x_{n+1}=f(x_n,x_{n-1},\cdots, x_0)\]的函数或序列。遇到这种形式的极限,很多同学就不知道从哪里下手求极限。

其实,要求得这种形式的极限并不难,难的在于,我们经常忘记了最重要的一步,那就是,证明极限是存在的。

我们来看一个例子:
例:设数列\(\{x_n\}\)满足:
\[ 0< x_0 <1, x_{n+1}=x_n(2-x_n),\]
求\(\lim_{n\to \infty}x_n\)。

这里我们看一下这种极限怎么求。假如我们知道这个序列是有极限的,那么,我们知道,\(n\to \infty\)时,\(x_{n+1}\)和\(x_{n}\)都有同样的极限,我们设这个极限为\(A\),那么我们只需要求一个关于\(A\)的一个代数方程,就得到了我们要求的极限。

但这里关键的一步是,我们怎么确定这个序列是有极限的。我们所学的内容里面,有两个极限存在的准则,对这种递推形式的极限,通常能用的是“单调有界数列必有极限”。所以我们要证两件事,一个是序列是单调的,另一个要证明序列是有界的。我们来看看完整的解答过程。

解:假定序列的极限是存在的,设此极限为\(A\),那么:\[\lim_{n\to\infty}x_{n+1}=A, \lim_{n\to\infty}x_{n}=A, \]

所以
\[A=A(2-A),\]

解此方程,可以得到 \(A^2=A\),那么\(A=1\) 或者 \(0\)。具体是 0 还是 1,我们要看我们的其余的证明过程。

现在我们证明这个序列的极限是存在的。因为\(0<x_0<1\),所以\(x_1=x_0(2-x_0)=2x_0-x_0^2\),配方,我们可以得到\(x_1=1-(1-x_0)^2\),所以 \(0<x_1<1\)。又因为 \(x_0<1\),所以 \(2-x_0>1\),所以 \(x_1=x_0(2-x_0)>x_0\)。我们用归纳法来证明,\(0<x_n<1\) 并且是单调增加的。根据极限存在准则II:单调有界数列必有极限。我们知道这个数列有极限。

现在假设\(0<x_n<1\),那么,\(0<x_{n+1}=x_n(2-x_n)<1\),跟上述证明一样,\(x_{n+1}>x_n\),所以序列是单调增加的。

所以,\(\lim_{n\to\infty}x_n=1\)。(\(A=0\) 舍去,因为 \(x_n>0\))

怎么寻找函数的渐近线

我们分别说明三种渐近线:垂直渐近线,水平渐近线和斜渐近线的定义,然后说明如何求这三类渐近线。

这个问题,对于大多数同学来讲,不是什么大的困难。毕竟,它的定义还是比较好理解,而且有了极限的基础以后,计算也不是什么难题。但有时候,有同学对于怎么寻找斜渐近线会有一些困难,不会求斜渐近线的表达式。

我们还是简单回顾一下三类渐近线的定义:

  1. 如果 \(\lim_{x\to x_0}f(x)=\infty\),则称直线 \(x=x_0\) 是函数 \(f(X)\) 的垂直渐近线,或者铅直渐近线;
  2. 如果 \(\lim_{x\to \infty}f(x)=A\) 或者 \(\lim_{x\to -\infty}f(x)=A\),则称直线 \(y=A\) 是函数 \(f(x)\) 的水平渐近线。注意这里要分两个无穷大方向;
  3. 如果 \(\lim_{x\to \infty}f(x)-ax-b=0\) 或者 \(\lim_{x\to -\infty}f(x)-ax-b=0\),则称直线 \(y=ax+b\) 是函数 \(f(X)\) 的斜渐近线。注意这里也要分两个无穷大方向。

我们在画函数的图形的时候,需要确定函数的渐近线。 那么现在我们来看一下怎么寻找函数的渐近线吧。

寻找渐近线的步骤是:先找垂直渐近线,再找水平渐近线,最后找斜渐近线。一个函数可能没有渐近线,也有可能三类渐近线都有。

  1. 垂直渐近线:垂直渐近线只可能在函数不连续的点处出现。这是为什么?因为从连续函数的性质知道,闭区间的连续函数有界,所以如果是连续的话,它的每一点的极限都是有限的(我们可以选一个很小的包含这点的连续区间)。
    找到不连续的点后,再在这点求极限。如果左右极限有一个趋于无穷大,那么这点处就有垂直渐近线。
  2. 水平渐近线:确定垂直渐近线后,就开始寻找水平渐近线。分别令 \(x\) 趋近于正、负无穷大,如果极限存在(不包括无穷大,无穷大是极限不存在的一种),那么就有水平渐近线;
  3. 斜渐近线:如果一个方向有水平渐近线,就不会有斜渐近线。也就是说,一个方向有水平渐近线,就不用找斜渐近线了(为什么?)。 如果没有水平渐近线,就来确定有没有斜渐近线。
    找斜渐近线的方式为: 先求极限 \(\lim_{x\to\infty}\frac{f(x)}{x}\),如果极限存在,值为 \(a\),则可确定有斜渐近线。接着,求极限 \(\lim_{x\to\infty}\frac{f(x)}{x}-ax\),如果极限为 \(b\),则斜渐近线的方程为 \(y=ax+b\)

如何求幂指函数的极限与导数?

幂指函数,看起来就是这样的函数 \(f(x)^{g(x)}\), 函数既像幂函数,又像指数函数,它的底和指数都是函数。但它们不是幂函数也不是指数函数,这一类函数的导数和极限 比较难以处理,这篇文章就对这种函数的相关问题做一个详细的剖析。

幂指函数,看起来就是这样的函数 \(f(x)^{g(x)}\), 函数既像幂函数,又像指数函数,它的底和指数都是函数。它在高数里面出现的频率是比较高的,特别是求极限和求导数的时候。对于这样的函数,最常见的错误就是求导的时候,把它当成幂函数的复合函数,或者普通的指数函数的复合函数来求导。这类函数的极限也是这门课的一个难点,很多同学见到这类函数的极限往往不知所措。这篇文章就对这种函数的相关问题做一个详细的剖析。

幂指函数的定义域:同指数函数一样,幂指函数要求它的底是正数,否则,函数可能就没有意义。例如,当 \(x<0\) 时,函数 \(x^x\) 就没什么意义。所以对于幂指函数来说,\(f(x)>0\),再加上 \(g(x)\) 和 \(f(x)\) 的定义域,幂指函数的定义域是这三个数集的交集。严格来说,如果设 \(f(x)\) 的定义域为 \(U_1\),\(g(x)\) 的定义域为 \(U_2\),\(V=\{x\in R : f(x)>0\}\) ,则幂指函数 \((f(x)^{g(x)}\) 的定义域是 \(U=U_1\cap U_2 \cap V\)

幂指函数的复合规则: 幂指函数是复合函数吗?答案是它是复合函数。 但它的复合规则不是由指数函数与幂函数的复合,也不是幂函数与指数函数的复合。那它是由什么样的函数,通过什么样的规则复合而成的呢?

我们先来对它进行变形, 先对它取对数,再取 \(e\) 底,那么 \(f(x)^{g(x)}=e^{g(x)\ln f(x)}\)。这样,问题就简单多了,我们可以认为它是由指数函数 \(e^u\) 和函数 \(g(x)\ln f(x)\) 复合而成的函数。这就是幂指函数的复合规则。

有了它的复合规则以后,幂指函数的极限与导数就变得容易多了。

幂指函数的极限: 如果 \(\lim_{x\to a}f(x)=A, \lim_{x\to a}g(x)=B\),且 \(A,B\) 都是常数并且不同时为 \(0\), 则 \(\lim_{x\to a}f(x)^{g(x)}=A^B \)。这个可以用复合函数的极限运算法则得到。 因为 \(\lim_{x\to a}f(x)^{g(x)} = e^{\lim_{x\to a}g(x)\ln f(x)} = e^{B\ln A}= A^B\)。

如果极限 \(\lim_{x\to a}f(x)^{g(x)}\) 是未定式极限,就是它是 \(0^0, 1^{\infty}\) 型或者 \(\infty^0\) 型中的一种。这时候的通常做法是将极限 \(\lim_{x\to a}f(x)^{g(x)}\) 化成 \(e^{\lim_{x\to a}g(x)\ln f(x)}\) 的形式,接着将指数部分化成形式 \(\displaystyle\lim_{x\to a}\frac{\ln f(x)}{\frac{1}{g(x)}}\)。这时候,指数部分的极限就成了两类基本的未定式极限 \(\frac{0}{0}\) 型或者 \(\frac{\infty}{\infty}\) 型,然后用洛必达法则可以求出极限指数部分的极限了。

对于 \(1^{\infty}\) 型的极限,还可以通过将它变形,运用第二个重要极限来求得它的极限。

幂指函数的导数:在教材里,幂指函数的导数一般是用对数求导法来求,而对数求导法是通过隐函数求导法得到的。那么知道了幂指函数的复合规则后,我们完全可以使用我们所熟悉的复合函数求导法则来求它的导数。我们来看怎么做。

设 \(F(x)=f(x)^{g(x)}\), 那么因为 \(f(x)^{g(x)}=e^{g(x)\ln f(x)}\), 所以可以设 \(u=g(x)\ln f(x)\),从而 \(F(x)\) 是函数 \(G(u)=e^u\) 和函数 \(u=g(x)\ln f(x)\) 复合得到。从而由复合函数的求导公式
\[F'(x)=G'(u) u'(x) = e^u \left(g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}\right)\]

将 \(u\) 回代,就得到了
\[F'(x)=G'(u) u'(x) = f(x)^{g(x)} \left(g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}\right)\]

如果熟悉了,可以直接这么求
\begin{align*}
\left(f(x)^{g(x)}\right)’&=\left(e^{g(x)\ln f(x)}\right)’ \\
&= e^{g(x)\ln f(x)} (g(x)\ln f(x))’ \\
&= f(x)^{g(x)}\left(g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}\right)
\end{align*}