Posted on

# 如何求 $$\tan^nx, \sec^nx$$ 的积分？

\begin{align*}I_n&=\int\tan^nxdx\\ &=\int\tan^{n-2}x\tan^2xdx\\ &=\int \tan^{n-2}x(\sec^2x-1)dx\\ &=\int \tan^{n-2}x\sec^2x-\int\tan^{n-2}xdx\\ &=\frac{1}{n-1}\tan^{n-1}x-I_{n-2} \end{align*}

$\int\tan xdx=\int\frac{\sin x}{\cos x}dx=-\ln|\cos x|+C$

\begin{align*}\int\tan^5xdx&=\frac{1}{4}\tan^4x-\int\tan^3xdx\\ &= \frac{1}{4}\tan^4x -(\frac{1}{2}\tan^2x -\int\tan xdx)\\ &= \frac{1}{4}\tan^4x -\frac{1}{2}\tan^2x- \ln|\cos x|+C \end{align*}

\begin{align*} \int\tan^6xdx&=\frac{1}{5}\tan^5x-\int\tan^4xdx\\ &= \frac{1}{5}\tan^5x -(\frac{1}{3}\tan^3x -\int\tan^2 xdx)\\ &= \frac{1}{5}\tan^5x -\frac{1}{3}\tan^3x+ \tan x-x+C \end{align*}

\begin{align*}I_n=\int\sec^nxdx&=\int\sec^{n-2}x\sec^2xdx\\ &=\sec^{n-2}\tan x-\int\tan x(n-2)\sec^{n-3}x\tan x\sec xdx\\ &= \sec^{n-2}\tan x – (n-2)\int\sec^{n-2}x\tan^2 x\\ &= \sec^{n-2}\tan x – (n-2)\int\sec^{n-2}x (\sec^2x-1)dx\\ &= \sec^{n-2}\tan x – (n-2)\int\sec^{n}xdx +(n-2)\int\sec^{n-2}xdx \end{align*}

$(n-1)I_n= \sec^{n-2}\tan x +(n-2)I_{n-2}$

$\int\sec xdx=\ln|\tan x+\sec x| +C$

\begin{align*}\int\sec^5xdx&=\frac{1}{4}\sec^3x\tan x+\frac{3}{4}\int\sec^3xdx\\ &= \frac{1}{4}\sec^3x\tan x + \frac{3}{4} \left(\frac{1}{2}\sec x \tan x+\int\sec x dx\right)\\ &= \frac{1}{4}\sec^3x\tan x + \frac{3}{8} \sec x \tan x + \frac{3}{4} \ln|\tan x+\sec x| +C \end{align*}

\begin{align*}\int\sec^6xdx&=\frac{1}{5}\sec^4x\tan x+\frac{4}{5}\int\sec^4xdx\\ &= \frac{1}{5}\sec^4x\tan x + \frac{4}{5} \left(\frac{2}{3}\sec^2 x \tan x+\int\sec^2 x dx\right)\\ &= \frac{1}{5}\sec^4x\tan x + \frac{8}{15} \sec^2 x \tan x +\frac{4}{5} \tan x+C \end{align*}

$1.\int\cot^nxdx,\qquad 2.\int\csc^nxdx$

\begin{align*}1. \int\cot^4xdx,\qquad &2.\int\csc^5xdx\\ 3.\int_0^{\frac{\pi}{4}}\tan^4xdx,\qquad& 4.\int_0^{\frac{\pi}{4}}\frac{\sec^8x-1}{\tan^2x}dx\end{align*}